227 lines
7.5 KiB
GLSL
227 lines
7.5 KiB
GLSL
|
#version 300 es
|
||
|
|
||
|
precision highp float;
|
||
|
|
||
|
out vec4 outColor;
|
||
|
|
||
|
// --- inversive geometry ---
|
||
|
|
||
|
struct vecInv {
|
||
|
vec3 sp;
|
||
|
vec2 lt;
|
||
|
};
|
||
|
|
||
|
// --- uniforms ---
|
||
|
|
||
|
// construction. the SPHERE_MAX array size seems to affect frame rate a lot,
|
||
|
// even though we should only be using the first few elements of each array
|
||
|
const int SPHERE_MAX = 200;
|
||
|
uniform int sphere_cnt;
|
||
|
uniform vecInv sphere_list[SPHERE_MAX];
|
||
|
uniform vec3 color_list[SPHERE_MAX];
|
||
|
|
||
|
// view
|
||
|
uniform vec2 resolution;
|
||
|
uniform float shortdim;
|
||
|
|
||
|
// controls
|
||
|
uniform float opacity;
|
||
|
uniform float highlight;
|
||
|
uniform int layer_threshold;
|
||
|
uniform bool debug_mode;
|
||
|
|
||
|
// light and camera
|
||
|
const float focal_slope = 0.3;
|
||
|
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||
|
const float ixn_threshold = 0.005;
|
||
|
const float INTERIOR_DIMMING = 0.7;
|
||
|
|
||
|
// --- sRGB ---
|
||
|
|
||
|
// map colors from RGB space to sRGB space, as specified in the sRGB standard
|
||
|
// (IEC 61966-2-1:1999)
|
||
|
//
|
||
|
// https://www.color.org/sRGB.pdf
|
||
|
// https://www.color.org/chardata/rgb/srgb.xalter
|
||
|
//
|
||
|
// in RGB space, color value is proportional to light intensity, so linear
|
||
|
// color-vector interpolation corresponds to physical light mixing. in sRGB
|
||
|
// space, the color encoding used by many monitors, we use more of the value
|
||
|
// interval to represent low intensities, and less of the interval to represent
|
||
|
// high intensities. this improves color quantization
|
||
|
|
||
|
float sRGB(float t) {
|
||
|
if (t <= 0.0031308) {
|
||
|
return 12.92*t;
|
||
|
} else {
|
||
|
return 1.055*pow(t, 5./12.) - 0.055;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vec3 sRGB(vec3 color) {
|
||
|
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||
|
}
|
||
|
|
||
|
// --- shading ---
|
||
|
|
||
|
struct taggedFrag {
|
||
|
int id;
|
||
|
vec4 color;
|
||
|
vec3 pt;
|
||
|
vec3 normal;
|
||
|
};
|
||
|
|
||
|
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
|
||
|
taggedFrag[2] result;
|
||
|
if (a.pt.z > b.pt.z) {
|
||
|
result[0] = a;
|
||
|
result[1] = b;
|
||
|
} else {
|
||
|
result[0] = b;
|
||
|
result[1] = a;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
|
||
|
// the expression for normal needs to be checked. it's supposed to give the
|
||
|
// negative gradient of the lorentz product between the impact point vector
|
||
|
// and the sphere vector with respect to the coordinates of the impact
|
||
|
// point. i calculated it in my head and decided that the result looked good
|
||
|
// enough for now
|
||
|
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||
|
|
||
|
float incidence = dot(normal, light_dir);
|
||
|
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||
|
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
|
||
|
}
|
||
|
|
||
|
// --- ray-casting ---
|
||
|
|
||
|
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
|
||
|
// the linear function `b*u + c`
|
||
|
const float DEG_THRESHOLD = 1e-9;
|
||
|
|
||
|
// the depths, represented as multiples of `dir`, where the line generated by
|
||
|
// `dir` hits the sphere represented by `v`. if both depths are positive, the
|
||
|
// smaller one is returned in the first component. if only one depth is
|
||
|
// positive, it could be returned in either component
|
||
|
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||
|
float a = -v.lt.s * dot(dir, dir);
|
||
|
float b = dot(v.sp, dir);
|
||
|
float c = -v.lt.t;
|
||
|
|
||
|
float adjust = 4.*a*c/(b*b);
|
||
|
if (adjust < 1.) {
|
||
|
// as long as `b` is non-zero, the linear approximation of
|
||
|
//
|
||
|
// a*u^2 + b*u + c
|
||
|
//
|
||
|
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
|
||
|
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
|
||
|
// have the same sign, `lin_root` will be the one closer to `u = 0`
|
||
|
float square_rect_ratio = 1. + sqrt(1. - adjust);
|
||
|
float lin_root = -(2.*c)/b / square_rect_ratio;
|
||
|
if (abs(a) > DEG_THRESHOLD * abs(b)) {
|
||
|
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
|
||
|
} else {
|
||
|
return vec2(lin_root, -1.);
|
||
|
}
|
||
|
} else {
|
||
|
// the line through `dir` misses the sphere completely
|
||
|
return vec2(-1., -1.);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void main() {
|
||
|
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||
|
vec3 dir = vec3(focal_slope * scr, -1.);
|
||
|
|
||
|
// cast rays through the spheres
|
||
|
const int LAYER_MAX = 12;
|
||
|
taggedFrag frags [LAYER_MAX];
|
||
|
int layer_cnt = 0;
|
||
|
for (int id = 0; id < sphere_cnt; ++id) {
|
||
|
// find out where the ray hits the sphere
|
||
|
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||
|
|
||
|
// insertion-sort the fragments we hit into the fragment list
|
||
|
float dimming = 1.;
|
||
|
for (int side = 0; side < 2; ++side) {
|
||
|
float hit_z = -hit_depths[side];
|
||
|
if (0. > hit_z) {
|
||
|
for (int layer = layer_cnt; layer >= 0; --layer) {
|
||
|
if (layer < 1 || frags[layer-1].pt.z >= hit_z) {
|
||
|
// we're not as close to the screen as the fragment
|
||
|
// before the empty slot, so insert here
|
||
|
if (layer < LAYER_MAX) {
|
||
|
frags[layer] = sphere_shading(
|
||
|
sphere_list[id],
|
||
|
hit_depths[side] * dir,
|
||
|
dimming * color_list[id],
|
||
|
id
|
||
|
);
|
||
|
}
|
||
|
break;
|
||
|
} else {
|
||
|
// we're closer to the screen than the fragment before
|
||
|
// the empty slot, so move that fragment into the empty
|
||
|
// slot
|
||
|
frags[layer] = frags[layer-1];
|
||
|
}
|
||
|
}
|
||
|
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
|
||
|
dimming = INTERIOR_DIMMING;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* DEBUG */
|
||
|
// in debug mode, show the layer count instead of the shaded image
|
||
|
if (debug_mode) {
|
||
|
// at the bottom of the screen, show the color scale instead of the
|
||
|
// layer count
|
||
|
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||
|
|
||
|
// convert number to color
|
||
|
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
|
||
|
vec3 color = mod(vec3(bits), 2.);
|
||
|
if (layer_cnt % 16 >= 8) {
|
||
|
color = mix(color, vec3(0.5), 0.5);
|
||
|
}
|
||
|
outColor = vec4(color, 1.);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// highlight intersections and cusps
|
||
|
for (int i = layer_cnt-1; i >= 1; --i) {
|
||
|
// intersections
|
||
|
taggedFrag frag0 = frags[i];
|
||
|
taggedFrag frag1 = frags[i-1];
|
||
|
float ixn_sin = length(cross(frag0.normal, frag1.normal));
|
||
|
vec3 disp = frag0.pt - frag1.pt;
|
||
|
float ixn_dist = max(
|
||
|
abs(dot(frag1.normal, disp)),
|
||
|
abs(dot(frag0.normal, disp))
|
||
|
) / ixn_sin;
|
||
|
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||
|
frags[i].color = mix(frags[i].color, vec4(1.), ixn_highlight);
|
||
|
frags[i-1].color = mix(frags[i-1].color, vec4(1.), ixn_highlight);
|
||
|
|
||
|
// cusps
|
||
|
float cusp_cos = abs(dot(dir, frag0.normal));
|
||
|
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[frag0.id].lt.s);
|
||
|
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||
|
frags[i].color = mix(frags[i].color, vec4(1.), cusp_highlight);
|
||
|
}
|
||
|
|
||
|
// composite the sphere fragments
|
||
|
vec3 color = vec3(0.);
|
||
|
for (int i = layer_cnt-1; i >= layer_threshold; --i) {
|
||
|
if (frags[i].pt.z < 0.) {
|
||
|
vec4 frag_color = frags[i].color;
|
||
|
color = mix(color, frag_color.rgb, frag_color.a);
|
||
|
}
|
||
|
}
|
||
|
outColor = vec4(sRGB(color), 1.);
|
||
|
}
|