archematics/public/rostamian/trisect-jamison.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

219 lines
8 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>An angle trisection</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>An angle trisection</h1>
<h4>
Construction attributed to C.&nbsp;R.&nbsp;Lindberg, as reported in<br>
Free Jamison, <i>Trisection Approximation</i>, American Mathematical Monthly,
vol.&nbsp;61, no.&nbsp;5, May 1954, pp.&nbsp;334&ndash;336.
</h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="700" height="400">
<param name="background" value="ffffff">
<param name="title" value="An angle trisection">
<param name="e[1]" value="O;point;fixed;200,200">
<param name="e[2]" value="A;point;fixed;200,350">
<param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none">
<param name="e[4]" value="B;point;circleSlider;C1,350,0;red">
<param name="e[5]" value="OA;line;connect;O,A;none;none;blue">
<param name="e[6]" value="OB;line;connect;O,B;none;none;blue">
<param name="e[7]" value="Dtmp;point;midpoint;A,B;none;none">
<param name="e[8]" value="D;point;cutoff;O,Dtmp,O,A">
<param name="e[9]" value="OD;line;connect;O,D;none;none;lightGray">
<param name="e[10]" value="C;point;extend;B,O,B,O">
<param name="e[11]" value="OC;line;connect;O,C;none;none;lightGray">
<param name="e[12]" value="CD;line;connect;C,D;none;none;green">
<param name="e[13]" value="E;point;extend;C,D,B,C">
<param name="e[14]" value="DE;line;connect;D,E;none;none;green">
<param name="e[15]" value="OE;line;connect;O,E;none;none;red">
<param name="e[16]" value="E';point;cutoff;O,E,O,A;none;none">
<param name="e[17]" value="p1;point;fixed;200,225;none;none">
<param name="e[18]" value="c1;circle;radius;O,p1;none;none;none;none">
<param name="e[19]" value="l1;line;chord;OB,c1;none;none;none">
<param name="e[20]" value="q1;point;first;l1;none;none">
<param name="e[21]" value="l2;line;chord;OE,c1;none;none;none">
<param name="e[22]" value="q2;point;first;l2;none;none">
<param name="e[23]" value="s1;sector;sector;O,q2,q1;none;none;black;orange">
<param name="e[24]" value="p2;point;fixed;200,225;none;none">
<param name="e[25]" value="c2;circle;radius;O,p2;none;none;none;none">
<param name="e[26]" value="l3;line;chord;OA,c2;none;none;none">
<param name="e[27]" value="q3;point;first;l3;none;none">
<param name="e[28]" value="l4;line;chord;OE,c2;none;none;none">
<param name="e[29]" value="q4;point;first;l4;none;none">
<param name="e[30]" value="s2;sector;sector;O,q3,q4;none;none;black;yellow">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$
(but stay on the right half of the circle).<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line $OE$ is an approximate trisector of the angle $AOB$.
</b>
</td></tr></table>
<h2>The construction</h2>
<p>
According to Jamison (see the reference at the top of this page)
the construction's main idea
comes from an unpublished work by C.&nbsp;R.&nbsp;Lindberg.
<p>
Consider the circular arc $AB$ centered at $O$, shown in the diagram above.
Assume the angle $AOB$ is between 0 and 180 degrees.
To trisect $AOB$, do:
<ol>
<li>
Extend $BO$ to intersect the circle at a point $C$.
<li>
Draw the bisector $OD$ of the angle $AOB$.
<li>
Draw the line $CD$ and extend it to a point $E$ such that $DE$ equals the
circle's diameter.
</ol>
<p>
The line $OE$ is an approximate trisector of the angle $AOB$.
<p>
Here is a heuristic explanation for why the construction works,
as explained by Jamison. The key lies
in the observation that (i) in the triangle $ODE$ the angles $O$ and $E$ are
&ldquo;small&rdquo;, and (ii) the side $ED$ is twice as long as the side $OD$.
Therefore from the law of sines we have $\sin(O)/\sin(E) = ED/OD = 2$,
which implies that the angle $O$ is approximately twice the angle $E$ in
the triangle $ODE$.
<p>
Let the measure of the angle $OED$ be $x$.
Then the triangle's external angle at $D$, that is the angle $ODC$, is the sum of
the internal angles $O$ and $E$, therefore it is approximately $3x$.
Therefore the angle $OCD$ is $3x$. Therefore the angle $BOD$ is $6x$.
Since the angle $E'OD$ is $2x$, we conclude that the angle $BOE'$ is $4x$.
Furthermore, since the angle $BOD$ is $6x$, the angle $BOA$ is $12x$. This shows
that $BOA$ is 3 times $BOE'$, as asserted.
<h2>Error Analysis</h2>
<p>
Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $EOB$, respectively.
The angle $DOB$ is half of $AOB$ by the construction, therefore it is equal to
$\alpha/2$. Consequently the angle $DCB$, which is half the
central angle $DOB$, equals $\alpha/4$.
The triangle $DOC$ is isosceles, therefore the angle $ODC$ also equals $\alpha/4$.
<p>
In the triangle $OED$, let $x$ and $y$ be the sizes of the angles
$OED$ and $EOD$, respectively. Since the sum $x+y$ of the triangle's internal
angles equals the triangle's
external angle $ODC$, we have $x+y = \alpha/4$. Let us note, however,
that the angle $y$ equals $DOB$ minus $EOB$. Thus $y = \alpha/2 - \beta$,
whence $x = \beta - \alpha/4$.
<p>
In the triangle $OED$, the side $DE$ is twice the side $OD$ by the construction,
therefore the law of sines gives $\sin y = 2 \sin x$. Consequently,
$\sin(\alpha/2 - \beta) = 2 \sin(\beta - \alpha/4)$. Solving this for $\beta$
we arrive at:
\[
\beta
= \frac{1}{4} \alpha + \arctan \frac{\sin(a/4)}{2+\cos(a/4)}
= \frac{1}{3} \alpha - \frac{1}{2^6\cdot3^4} \alpha^3 + O(\alpha^5)
= \frac{1}{3} \alpha - \frac{1}{5184} \alpha^3 + O(\alpha^5).
\]
<p>
We see that the trisection error $e(\alpha) = \alpha/3 - \beta$ is given by:
\[
e(\alpha) = \frac{1}{12}\alpha - \arctan \frac{\sin(a/4)}{2+\cos(a/4)}.
\]
(This formula is also given in Jamison's article.)
The function $e(a)$ is monotonically increasing.
The worst error on the interval $0 \le \alpha \le \pi/2$ is
$e(\pi/2)$ = 0.000757 radians = 0.0434 degrees.
The worst error on the interval $0 \le \alpha \le \pi$ is
$e(\pi)$ = 0.0063 radians = 0.361 degrees.
That's quite good for such a simple construction.
<h2>An interesting coincidence</h2>
<p>
The angle $\beta$ constructed by this method coincides <em>exactly</em>
with that of <a href="trisect-pllana.html">Pllana's construction</a>,
where $\beta$ is given as:
\[
\beta
= \arctan \frac
{\sin\frac{\alpha}{2} + 2\sin\frac{\alpha}{4}}
{\cos\frac{\alpha}{2} + 2\cos\frac{\alpha}{4}}.
\]
One way to verify that the seemingly different expressions
for $\beta$ are in fact identical,
is to compare their derivatives. In both cases we have:
\[
\frac{d\beta}{d\alpha} =
\frac{3(1 + \cos\frac{\alpha}{4})}{2(5 + 4\cos\frac{\alpha}{4})}.
\]
<h2>An extension</h2>
<p>
Although this construction is quite good as is, Jamison proceeds to give
<a href="trisect-jamison-ext.html">an extension of Lindberg's method</a>
which requires a bit more work but is substantially more accurate.
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a> on
July 22, 2002.<br>
Cosmetic revisions on June 7, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>