archematics/public/rostamian/trisect-jamison-ext.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

185 lines
6.6 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>An angle trisection</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>An angle trisection</h1>
<h4>
Free Jamison, <i>Trisection Approximation</i>, American Mathematical Monthly,
vol.&nbsp;61, no.&nbsp;5, May 1954, pp.&nbsp;334&ndash;336.
</h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="700" height="400">
<param name="background" value="ffffff">
<param name="title" value="An angle trisection">
<param name="e[1]" value="O;point;fixed;200,200">
<param name="e[2]" value="A;point;fixed;200,350">
<param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none">
<param name="e[4]" value="B;point;circleSlider;C1,280,0;red">
<param name="e[5]" value="OA;line;connect;O,A;none;none;blue">
<param name="e[6]" value="OB;line;connect;O,B;none;none;blue">
<!-- the points F, D, C -->
<param name="e[7]" value="x1;point;angleBisector;A,O,B;none;none">
<param name="e[8]" value="x2;point;angleBisector;x1,O,B;none;none">
<param name="e[9]" value="x3;point;angleBisector;x1,O,x2;none;none">
<param name="e[10]" value="F;point;cutoff;O,x2,O,A">
<param name="e[11]" value="D;point;cutoff;O,x3,O,A">
<param name="e[12]" value="C;point;extend;F,O,F,O">
<!-- the lines FC, CE, OE -->
<param name="e[13]" value="FC;line;connect;F,C;none;none;lightGray">
<param name="e[14]" value="CD;line;connect;C,D;none;none;green">
<param name="e[15]" value="E;point;extend;C,D,C,F">
<param name="e[16]" value="DE;line;connect;D,E;none;none;green">
<param name="e[17]" value="OE;line;connect;O,E;none;none;red">
<param name="e[18]" value="p1;point;fixed;225,200;none;none">
<param name="e[19]" value="c1;circle;radius;O,p1;none;none;none;none">
<param name="e[20]" value="l1;line;chord;OA,c1;none;none;none">
<param name="e[21]" value="q1;point;first;l1;none;none">
<param name="e[22]" value="l2;line;chord;OE,c1;none;none;none">
<param name="e[23]" value="q2;point;first;l2;none;none">
<param name="e[24]" value="s1;sector;sector;O,q1,q2;none;none;black;yellow">
<param name="e[25]" value="p2;point;fixed;225,200;none;none">
<param name="e[26]" value="c2;circle;radius;O,p2;none;none;none;none">
<param name="e[27]" value="l3;line;chord;OE,c2;none;none;none">
<param name="e[28]" value="q3;point;first;l3;none;none">
<param name="e[29]" value="l4;line;chord;OB,c2;none;none;none">
<param name="e[30]" value="q4;point;first;l4;none;none">
<param name="e[31]" value="s2;sector;sector;O,q3,q4;none;none;black;orange">
<!-- needed for the error analysis, not the construction -->
<param name="e[32]" value="OD;line;connect;O,D;none;none;lightGray">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$
(but stay on the right half of the circle).<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line $OE$ is an approximate trisector of the angle $AOB$.
</b>
</td></tr></table>
<h2>The construction</h2>
<p>
This construction, due to Free Jamison
(see the reference at the top of this page)
is a more accurate variant of the construction described in
<a href="trisect-jamison.html">a simpler construction</a>.
<p>
Consider the circular arc $AB$ centered at $O$, shown in the diagram above.
Assume the angle $AOB$ is between 0 and 180 degrees.
To trisect $AOB$, do:
<ol>
<li> Pick the points $F$ and $D$ on the arc $BA$ such that
arc $BF$ = 2/8 of the arc $BA$ and
arc $BD$ = 3/8 of the arc $BA$.
<li> Extend $FO$ to intersect the circle at a point $C$.
<li> Draw the line $CD$ and extend it to a point $E$ such that $DE$ equals the
circle's diameter.
</ol>
<p>
The line $OE$ is an approximate trisector of the angle $AOB$.
<h2>Error Analysis</h2>
<p>
<p>
Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $EOB$, respectively.
The angle $FOD$ equals $\alpha/8$ by the construction, therefore the
angle $FCD$, which is half the central angle $FOD$, is equal to
$\alpha/16$.
The triangle $DOC$ is isosceles, therefore the angle $ODC$ also equals $\alpha/16$.
<p>
In the triangle $OED$, let $x$ and $y$ be the sizes of the angles
$OED$ and $EOD$, respectively. Since the sum $x+y$ of the triangle's internal
angles equals the triangle's
external angle $ODC$, we have $x+y = \alpha/16$. Let us note, however,
that the angle $y$ equals $DOB$ minus $EOB$. Thus $y = 3\alpha/8 - \beta$,
whence $x = \beta - 5\alpha/16$.
<p>
In the triangle $OED$, the side $DE$ is twice the side $OD$ by the construction,
therefore the law of sines gives $\sin y = 2 \sin x$. Consequently,
$\sin(3\alpha/8 - \beta) = 2 \sin(\beta - 5\alpha/16)$.
Solving this for $\beta$ we arrive at:
\[
\beta
= \frac{5}{16} \alpha + \arctan \frac{\sin(a/16)}{2+\cos(a/16)}
= \frac{1}{3} \alpha - \frac{1}{2^{12}\cdot3^4} \alpha^3 + O(\alpha^5)
= \frac{1}{3} \alpha - \frac{1}{331776} \alpha^3 + O(\alpha^5).
\]
<p>
We see that the trisection error $e(\alpha) = \alpha/3 - \beta$ is given by:
\[
e(\alpha) = \frac{1}{48}\alpha - \arctan \frac{\sin(a/16)}{2+\cos(a/16)}.
\]
(This formula is also given in Jamison's article.)
The function $e(a)$ is monotonically increasing in $\alpha$.
The worst error on the interval $0 \le \alpha \le \pi/2$ is
$e(\pi/2)$ = 0.0000117 radians = 0.00067 degrees.
The worst error on the interval $0 \le \alpha \le \pi$ is
$e(\pi)$ = 0.000093756 radians = 0.00537 degrees.
Quite impressive!
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a> on
July 22, 2002.
<br>Cosmetic revisions on June 7, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>