archematics/public/rostamian/trisect-dudley2.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

155 lines
5.3 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>An angle trisection</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>An angle trisection</h1>
<h4>Construction attributed to A. G. O<br>
From page 133 of<br>
Underwood Dudley, <i>The Trisectors</i>, 2nd edition, 1996.
</h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="450" height="260">
<param name="background" value="ffffff">
<param name="title" value="An angle trisection">
<param name="e[1]" value="O;point;fixed;210,225">
<param name="e[2]" value="A;point;fixed;420,225">
<param name="e[3]" value="cir1;circle;radius;O,A;none;none;none;none">
<param name="e[4]" value="B;point;circleSlider;cir1,0,0;red;red">
<param name="e[5]" value="OA;line;connect;O,A;none;none;blue">
<param name="e[6]" value="OB;line;connect;O,B;none;none;blue">
<param name="e[7]" value="arcAB;sector;sector;O,A,B;none;none;blue;none">
<param name="e[8]" value="pt1;point;angleBisector;A,O,B;none;none">
<param name="e[9]" value="C;point;cutoff;O,pt1,O,A">
<param name="e[10]" value="OC;line;connect;O,C;none;none;lightGray">
<param name="e[11]" value="D;point;fixed;280,225">
<param name="e[12]" value="E;point;cutoff;OB,O,D">
<param name="e[13]" value="G;point;cutoff;OC,O,D">
<param name="e[14]" value="F;point;extend;A,O,O,D">
<param name="e[15]" value="OF;line;connect;O,F;none;none;lightGray">
<param name="e[16]" value="sec1;sector;sector;O,D,E;none;none;orange">
<param name="e[17]" value="sec2;sector;sector;O,E,F;none;none;lightGray">
<param name="e[18]" value="li1;line;chord;F,G,cir1;none;none;none">
<param name="e[19]" value="T;point;last;li1">
<param name="e[20]" value="FT;line;connect;F,T;none;none;lightGray">
<param name="e[21]" value="OT;line;connect;O,T;none;none;red">
<!-- angle markers -->
<param name="e[22]" value="p1;point;fixed;240,225;none;none">
<param name="e[23]" value="c1;circle;radius;O,p1;none;none;none;none">
<param name="e[24]" value="l1;line;chord;OA,c1;none;none;none">
<param name="e[25]" value="q1;point;first;l1;none;none">
<param name="e[26]" value="l2;line;chord;OT,c1;none;none;none">
<param name="e[27]" value="q2;point;first;l2;none;none">
<param name="e[28]" value="s1;sector;sector;O,q1,q2;none;none;black;orange">
<param name="e[29]" value="l3;line;chord;OB,c1;none;none;none">
<param name="e[30]" value="q3;point;first;l3;none;none">
<param name="e[31]" value="s2;sector;sector;O,q2,q3;none;none;black;yellow">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line, $OT$, is an approximate trisector of the angle $AOB$.
</b>
</td></tr></table>
<h2>Construction</h2>
<p>
We wish to trisect the given angle $AOB$ represented by the circular arc
$AB$ centered at $O$, as shown in the diagram above.
<ol>
<li>
Draw the bisector $OC$ of the angle $AOB$.
<li>
Draw the circular arc $DE$ centered at $O$ so that $OD = \frac{1}{3} OA$.
Let $G$ be where the line $OC$ intersects the arc $DE$.
<li>
Locate $F$ on the extension of $OA$ so that $OF=OD$.
<li>
Connect $FG$ and extend to the intersection point $T$ with
the arc $AB$.
</ol>
The line $OT$ (shown in red) is an approximate trisector of the angle $AOB$.
<h2>Error Analysis</h2>
<p>
Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $AOT$,
respectively. It is straightforward to show that
\[
\beta
= \frac{\alpha}{4} + \arcsin\Big(
\frac{1}{3}\sin\frac{1}{4}\alpha \Big)
= \frac{1}{3}\alpha - \frac{1}{2^4\cdot3^4} \alpha^3 + O(\alpha^7)
= \frac{1}{3}\alpha - \frac{1}{1296} \alpha^3 + O(\alpha^7).
\]
The term after $\alpha^3$ is $\alpha^7$. That's not a typo.
<p>
The error
$
\ds e(\alpha) = \frac{\alpha}{3} - \beta
$
is monotonically increasing in $\alpha$.
The worst error on the interval $0 \le \alpha \le \pi/2$ is
$e(\pi/2) =$ 0.003 radians = 0.171 degrees.
The worst error on the interval $0 \le \alpha \le \pi$ is
$e(\pi)$ = 0.024 radians = 1.367 degrees.
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a>
on July 26, 2002.<br>
Cosmetic revisions on June 13, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>