archematics/public/rostamian/trisect-baker.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

268 lines
10 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>An angle trisection</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>An angle trisection</h1>
<h4>Construction by
<a href="mailto:wayne.baker@ed.cna.nl.ca">Wayne Baker</a></h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="570" height="360">
<param name="background" value="ffffff">
<param name="title" value="An angle trisection">
<!-- the angle AOB -->
<param name="e[1]" value="O;point;fixed;260,310">
<param name="e[2]" value="A;point;fixed;520,310">
<param name="e[3]" value="OA;line;connect;O,A;none;none;blue">
<param name="e[4]" value="C;circle;radius;O,A;none;none;none;none">
<param name="e[5]" value="B;point;circleSlider;C,20,0;red;red">
<param name="e[6]" value="OB;line;connect;O,B;none;none;blue">
<param name="e[7]" value="z1;sector;sector;O,A,B;none;none;blue;none">
<!-- point P quadrisects the arc AB -->
<param name="e[8]" value="t1;point;angleBisector;A,O,B;none;none">
<param name="e[9]" value="t2;point;angleBisector;A,O,t1;none;none">
<param name="e[10]" value="Ot2;line;chord;O,t2,C;none;black;none">
<param name="e[11]" value="P;point;first;Ot2">
<param name="e[12]" value="AP;line;connect;A,P;none;none;green">
<!-- the arc A'OB' -->
<param name="e[13]" value="A';point;fixed;455,310">
<param name="e[14]" value="C';circle;radius;O,A';none;none;none;none">
<param name="e[15]" value="t9;line;chord;O,B,C';none;none;none">
<param name="e[16]" value="B';point;first;t9">
<param name="e[17]" value="z2;sector;sector;O,A',B';none;none;orange;none">
<!-- P' -->
<param name="e[18]" value="t3;circle;radius;A',A,P;none;none;none;none">
<param name="e[19]" value="t4;line;bichord;t3,C';none;none;none">
<param name="e[20]" value="P';point;first;t4">
<param name="e[21]" value="s1;line;chord;O,P',C;none;none;none">
<param name="e[22]" value="s2;point;first;s1;none;none">
<param name="e[23]" value="s3;line;connect;O,s2;none;none;red">
<param name="e[24]" value="A'P';line;connect;A',P';none;none;green">
<!-- angle marker -->
<param name="e[25]" value="p1;point;fixed;290,310;none;none">
<param name="e[26]" value="c1;circle;radius;O,p1;none;none;none;none">
<param name="e[27]" value="l1;line;chord;OA,c1;none;none;none">
<param name="e[28]" value="q1;point;first;l1;none;none">
<param name="e[29]" value="l2;line;chord;s3,c1;none;none;none">
<param name="e[30]" value="q2;point;first;l2;none;none">
<param name="e[31]" value="S1;sector;sector;O,q1,q2;none;none;black;orange">
<param name="e[32]" value="l3;line;chord;OB,c1;none;none;none">
<param name="e[33]" value="q3;point;first;l3;none;none">
<param name="e[34]" value="S2;sector;sector;O,q2,q3;none;none;black;yellow">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line is an approximate trisector of the angle $AOB$.
</b>
</td></tr></table>
<H2>The Basic Construction</H2>
<p>
Here is a very simple straightedge and compass
construction of an approximate angle trisector due to
<a href="mailto:wayne.baker@ed.cna.nl.ca">Wayne Baker</a>.
<p>
Let us represent the angle by
the circular arc $AB$ centered at $O$; see the diagram above.
The angle's size may be anything from 0 to 180 degrees.
To trisect, do:
<ol>
<li>
Quadrisect the angle $AOB$, that is, divide it into four
equal parts. The arc $AP$ in the diagram above represents one quarter
of the original arc $AB$. Let $L$ be the length of the chord $AP$ (shown in green).
<li>
Draw a circular arc (shown in orange)
centered at $O$ and radius 3/4 of $OA$. Mark $A'$ and $B'$ its intersections
with the rays $OA$ and $OB$, respectively.
<li>
Swing an arc (not shown) of radius $L$ centered at $A'$ and mark $P'$ its intersection with
the arc $A'B'$, as shown.
</ol>
<p>
The line $OP'$ is an approximate trisector of the angle $AOB$.
<h2>Error Analysis</h2>
<p>
Let $\alpha$ and $\beta=\tau(\alpha)$ be the sizes of the angles $AOB$ and $A'OP'$,
respectively. It is straightforward to show that
\[
\beta
= 2 \arcsin\big(\frac{4}{3}\sin\frac{\alpha}{8}\big)
= \frac{\alpha}{3} + \frac{7}{2^7\cdot3^4}\alpha^3 + O(\alpha^5)
= \frac{\alpha}{3} + \frac{7}{10368}\alpha^3 + O(\alpha^5).
\]
<!-- The first two terms of the series are the same as those
in trisect-dunham.html. The third terms are different.
b_baker := 2*arcsin(4/3*sin(a/8));
series(b_baker,a);
b_durham := a/2 - arctan(sin(a/4 - arcsin(sin(a/4)/2))*4/3);
series(b_durham, a);
-->
<p>
The error
$
\ds e(\alpha) = \tau(\alpha) - \frac{\alpha}{3}
$
is monotonically increasing in $\alpha$.
The worst error on the interval $0 \le \alpha \le \pi/2$ is
$e(\pi/2)$ = 0.002695 radians = 0.154 degrees.
The worst error on the interval $0 \le \alpha \le \pi$ is
$e(\pi)$ = 0.0237 radians = 1.360 degrees.
<h2>Iterative Improvement</h2>
<p>
As we see in the asymptotic expansion shown above, the
angle $\tau(\alpha)$ is slightly larger than the target value of $\alpha/3$.
Making three copies of the constructed angle, and putting them
end-to-end as in arcs $A'P'$, $P'P''$, and $P''P'''$ shown in the diagram below,
we arrive at the endpoint $P'''$ which is very slightly off the point $B'$,
and just outside the arc $A'B'$. The constructible angle $B'OP'''$ is exactly
three times the error $e(\alpha)$.
If we were able to trisect $B'OP'''$ exactly, then we
would know the error, and consequently will have achieved
the exact trisection of the original angle.
Of course the exact trisection of $B'OP'''$ is impossible in general, but we
may repeat the method outlined in the <em>Basic Construction</em> above
to obtain an <em>approximate</em> trisection of $B'OP'''$,
which will yield $ \tau\big(3\tau(\alpha) - \alpha\big) $,
and consequently an improved trisection $\tau_{\mathrm{improved}}(\alpha)$
of the original angle:
\[
\tau_{\mathrm{improved}}(\alpha) = \tau(\alpha) - \tau\big(3\tau(\alpha) - \alpha\big)
= \frac{\alpha}{3} - \frac{7^4}{2^{28}\cdot3^{13}} \alpha^9 +
O(\alpha^{11}).
\]
The error
$ \ds e_{\mathrm{improved}}(\alpha) = \frac{\alpha}{3} - \tau_{\mathrm{improved}}(\alpha)$
is monotonically increasing in $\alpha$. In particular,
$e_{\mathrm{improved}}(\pi/2) = 1.5\times 10^{-9}$ radians
$ = 8.6\times10^{-8}$ degrees.
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="570" height="360">
<param name=background value="ffffff">
<param name=title value="An angle trisection">
<!-- the angle AOB -->
<param name="e[1]" value="O;point;fixed;260,310">
<param name="e[2]" value="A;point;fixed;520,310">
<param name="e[3]" value="OA;line;connect;O,A">
<param name="e[4]" value="C;circle;radius;O,A;none;none;none;none">
<param name="e[5]" value="B;point;circleSlider;C,50,0">
<param name="e[6]" value="OB;line;connect;O,B">
<param name="e[7]" value="z1;sector;sector;O,A,B;none;none;blue;none">
<!-- point P quadrisects the arc AB -->
<param name="e[8]" value="t1;point;angleBisector;A,O,B;none;none">
<param name="e[9]" value="t2;point;angleBisector;A,O,t1;none;none">
<param name="e[10]" value="Ot2;line;chord;O,t2,C;none;black;none">
<param name="e[11]" value="P;point;first;Ot2">
<param name="e[12]" value="OP;line;connect;O,P;none;none;none">
<!-- the arc A'OB' -->
<param name="e[13]" value="A';point;fixed;455,310">
<param name="e[14]" value="C';circle;radius;O,A';none;none;none;none">
<param name="e[15]" value="t9;line;chord;O,B,C';none;none;none">
<param name="e[16]" value="B';point;first;t9">
<param name="e[17]" value="z2;sector;sector;O,A',B';none;none;orange;none">
<!-- P' -->
<param name="e[18]" value="t3;circle;radius;A',A,P;none;none;none;none">
<param name="e[19]" value="t4;line;bichord;t3,C';none;none;none">
<param name="e[20]" value="P';point;first;t4">
<param name="e[21]" value="s1;line;chord;O,P',C;none;none;none">
<param name="e[22]" value="s2;point;first;s1;none;none">
<param name="e[23]" value="s3;line;connect;O,s2;none;none;red">
<!-- P'' -->
<param name="e[24]" value="t5;circle;radius;P',A,P;none;none;none;none">
<param name="e[25]" value="t6;line;bichord;t5,C';none;none;none">
<param name="e[26]" value="P'';point;first;t6">
<!-- P'''
Note the trailing spaces after P'''. These become a part of the label!
-->
<param name="e[27]" value="t7;circle;radius;P'',A,P;none;none;none;none">
<param name="e[28]" value="t8;line;bichord;t7,C';none;none;none">
<param name="e[29]" value="P''' ;point;first;t8">
<param name="e[30]" value="OP''';line;connect;O,P''' ;none;none;black">
<param name="e[31]" value="u1;sector;sector;O,B',P''' ;none;none;none;magenta">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line is an approximate trisector of the angle $AOB$.<br>
The arcs $P'P''$ and $P''P'''$ are copies of $A'P'$. The endpoint $P'''$
is just slightly off the point $B'$.<br>
The (very small and nearly indiscernible)
angle $B'OP'''$ is three times the trisection error.
</b>
</td></tr></table>
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a> on
May 31, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>