archematics/public/rostamian/steve_gray.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

142 lines
4.7 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Triangles with common base</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>Triangles with common base</h1>
<h4>An interesting problem proposed by
<a href="mailto:stevebg@adelphia.net">Steve Gray</a></h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="650" height="250">
<param name="background" value="ffffff">
<param name="title" value="Triangles with common base">
<param name="e[1]" value="A;point;fixed;50,215">
<param name="e[2]" value="B;point;fixed;250,215">
<param name="e[3]" value="T0;polygon;equilateralTriangle;A,B">
<param name="e[4]" value="C;point;vertex;T0,3">
<param name="e[5]" value="D;point;free;115,173;red;red">
<param name="e[6]" value="DC;line;connect;D,C;none;none;orange">
<param name="e[7]" value="DA;line;connect;D,A;none;none;blue">
<param name="e[8]" value="DB;line;connect;D,B;none;none;green">
<param name="e[9]" value="P;point;fixed;300,215">
<param name="e[10]" value="Q;point;fixed;600,215">
<param name="e[11]" value="PQ;line;connect;P,Q">
<param name="e[12]" value="B';point;similar;P,Q,C,A,D">
<param name="e[13]" value="PB';line;connect;P,B';none;none;green">
<param name="e[14]" value="QB';line;connect;Q,B';none;none;green">
<param name="e[15]" value="C';point;similar;P,Q,A,B,D">
<param name="e[16]" value="PC';line;connect;P,C';none;none;orange">
<param name="e[17]" value="QC';line;connect;Q,C';none;none;orange">
<param name="e[18]" value="A';point;similar;P,Q,B,C,D">
<param name="e[19]" value="PA';line;connect;P,A';none;none;blue">
<param name="e[20]" value="QA';line;connect;Q,A';none;none;blue">
<param name="e[21]" value="T1;polygon;triangle;B',C',A';none;none;lightGray">
<!-- construct the centroid -->
<param name="e[22]" value="midA'B';point;midpoint;A',B';none;none">
<param name="e[23]" value="li1;line;connect;C',midA'B';none;none;none">
<param name="e[24]" value="midB'C';point;midpoint;B',C';none;none">
<param name="e[25]" value="li2;line;connect;A',midB'C';none;none;none">
<param name="e[26]" value="M;point;intersection;li1,li2">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $D$.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
Proposition: $A'B'C'$ is equilateral and its centroid $M$ is fixed.
</b>
</td></tr></table>
<h2>The construction</h2>
<p>
This problem was proposed by
<a href="mailto:stevebg@adelphia.net">Steve Gray</a>
in the <code>geometry.puzzles</code> newsgroup
(<a href="http://mathforum.org/kb/message.jspa?messageID=1088552">see
the original message</a>) on July 26, 2002.
Scroll to the bottom of that page for a link to the solution.
<p>
Consider an equilateral triangle $ABC$, a line segment $PQ$,
and an arbitrary point $D$, as seen in the diagram above.
On the segment $PQ$ construct three triangles
$PC'Q$,
$PA'Q$,
$PB'Q$,
similar to the triangles
$ADB$,
$BDC$,
$CDA$,
respectively.
<p>
<b>Proposition 1:</b>
The triangle $A'B'C'$ is equilateral.
<p>
<b>Proposition 2:</b>
The centroid of $A'B'C'$ is independent of $D$.
<p>
Steve adds:
<blockquote>
<p>
Now generalize this for a regular $n$-gon. The new points form a
regular $n$-gon whose centroid is independent of $D$.
This problem is original so far as I know. I am interested in the
simplest synthetic solution; no algebra, please.
</blockquote>
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a>
July 26, 2002.<br>
Cosmetic revisions on June 17, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html">Geometry Problems and Puzzles</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>