archematics/public/rostamian/incenter.html
Glen Whitney c99b51dafa feat: Start implementing Rostamian's pages ()
Began with incenter.html, the first one alphabetically. Needed one
  new point construction method, and a new option to see what was
  going on.

  Got the planar diagrams on that page working. The next step on  will
  be to get 3D diagrams as the theorem on this page generalizes to 3D. That
  will be a bigger task, so merging this now.

Reviewed-on: 
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
2023-10-06 19:38:56 +00:00

393 lines
13 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>The incenter via algebra</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>A triangle's incenter via algebra</h1>
<h2>&hellip; and extension to tetrahedra</h2>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="400" height="300">
<param name="background" value="ffffff">
<param name="title" value="The incenter via algebra">
<param name="e[1]" value="A;point;fixed;100,250">
<param name="e[2]" value="B;point;fixed;300,250">
<param name="e[3]" value="C;point;free;50,50;red;red">
<param name="e[4]" value="ABC;polygon;triangle;A,B,C">
<param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none">
<param name="e[6]" value="C';point;proportion;A,pt1,A,C,A,B,A,B;none;none">
<param name="e[7]" value="pt2;point;extend;B,A,A,C;none;none">
<param name="e[8]" value="A';point;proportion;B,pt2,B,A,B,C,B,C;none;none">
<param name="e[9]" value="pt3;point;extend;C,B,B,A;none;none">
<param name="e[10]" value="B';point;proportion;C,pt3,C,B,C,A,C,A;none;none">
<param name="e[11]" value="AA';line;connect;A,A';none;none;magenta">
<param name="e[12]" value="BB';line;connect;B,B';none;none;magenta">
<param name="e[13]" value="CC';line;connect;C,C';none;none;magenta">
<param name="e[14]" value="O;point;intersection;AA',BB'">
<param name="e[15]" value="H;point;foot;O,A,B;none;none">
<param name="e[16]" value="IC;circle;radius;O,H;none;none;black;none">
</applet>
</td></tr>
<tr><td>
<b>
Drag $C$ to change the geometry.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The incenter lies at the intersection of angle bisectors.
</b>
</td></tr></table>
<h2>Statement of the problem</h2>
<p>
It is a fact of elementary geometry that the center of
a triangle's incircle&mdash;known as its <em>incenter</em>&mdash;lies
at the point of intersection of the
triangle's angle bisectors. This leads to an elegant expression for
the location of the incenter as a linear combination of the
triangle's vertices, as stated in:
<p>
<b>Proposition 1:</b>
<i>
Let $a$, $b$, $c$ be the lengths of the
sides opposite to the vertices $A$, $B$, $C$ of the triangle $ABC$.
Then the incenter, $O$, is expressed as a linear combination of
the vertices as:
\[
O = \frac{a}{p}A + \frac{b}{p}B + \frac{c}{p}C,
\]
where $p = a + b + c$ is the triangle's perimeter.
</i>
<p>
To make sense of this statement, you need to know something about
the algebra of points. The following capsule summary is all that's needed:
<blockquote>
<p>
<b>The algebra of points:</b>
Consider the points $A$ and $B$ and a variable $t$ that takes
values in the range 0 to 1.
If $T$ is a point on the segment $AB$
such that $AT/AB = t$, we write $T = (1-t)A + tB$. Note that when
$t=0$ we get $T=A$, and when $t=1$ we get $T=B$.
As the value of $t$ ranges from 0 to 1, the point $T$ slides
from $A$ to $B$.
</blockquote>
<h2>A preliminary proposition</h2>
<p>
The following elementary proposition is needed for the proof of
Proposition&nbsp;1. This one is a standard result and is
likely to be found in Euclid's <em>Elements</em> but I haven't checked.
<p>
<i>PS:</i>
After this web page was written,
I found out that
Proposition&nbsp;2 appears in Euclid's <em>Elements</em> as
<a href="http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI3.html">Book&nbsp;VI, Proposition&nbsp;3</a>
with a simpler and more elegant proof!
Nevertheless, I am retaining my original proof here as
a not-so-elegant alternative.
<p>
<b>Proposition 2:</b>
<i>
Let the bisector of the angle $C$ in the triangle $ABC$ meet the side $AB$
at point $P$. We have:
\[
\frac{PA}{PB} = \frac{b}{a},
\]
where $a$ and $b$ are as in Proposition&nbsp;1.
</i>
<p>
<b>Proof:</b>
From $P$ drop perpendicular $PM$ and $PN$ onto the sides $AC$ and $BC$;
see the diagram below. The right triangles $CMP$ and $CNP$ are congruent
because they share a common hypotenuse and their angles at $C$ are equal.
Therefore, $PM = PN$.
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="400" height="300">
<param name="background" value="ffffff">
<param name="title" value="The incenter via algebra">
<param name="e[1]" value="A;point;fixed;50,250">
<param name="e[2]" value="B;point;fixed;350,250">
<param name="e[3]" value="C;point;free;100,50;red;red">
<param name="e[4]" value="ABC;polygon;triangle;A,B,C">
<param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none">
<param name="e[6]" value="P;point;proportion;A,pt1,A,C,A,B,A,B">
<param name="e[7]" value="CP;line;connect;C,P;none;none;magenta">
<param name="e[8]" value="M;point;foot;P,C,A">
<param name="e[9]" value="N;point;foot;P,C,B">
<param name="e[10]" value="PM;line;connect;P,M;none;none;green">
<param name="e[11]" value="PN;line;connect;P,N;none;none;green">
<param name="e[12]" value="H;point;foot;C,A,B">
<param name="e[13]" value="CH;line;connect;C,H;none;none;cyan">
<param name="e[14]" value="AH;line;connect;A,H;none;none">
<param name="e[15]" value="BN;line;connect;B,N;none;none">
<param name="e[16]" value="AM;line;connect;A,M;none;none">
</applet>
</td></tr>
<tr><td>
<b>
Drag $C$ to change the geometry.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
</b>
</td></tr></table>
<p>
Let $H$ be the foot of the altitude dropped from $C$. Let us note
the area of the triangle $APC$ may be expressed in two different ways
in terms of the altitudes $CH$ and $PM$:
\[
\frac{1}{2} AP \cdot CH = \frac{1}{2} AC \cdot PM.
\]
Similarly, the area of the triangle $BPC$ may be expressed in two
different way in terms of the altitudes $CH$ and $PN$:
\[
\frac{1}{2} BP \cdot CH = \frac{1}{2} BC \cdot PN.
\]
Dividing these two equalities and recalling that $PM = PN$,
we arrive at the desired assertion.&nbsp;&nbsp;&nbsp;<b>QED</b>
<h2>The proof of Proposition 1</h2>
<p>
The diagram below shows the bisector $CC'$ of the angle $C$.
It is known from elementary geometry that the incenter $O$ lies
on the bisector.
From Proposition 2 we have $C'A/C'B = b/a$. It
follows that $AC'/AB = b/(a+b)$. In terms of the notation of
<em>the algebra of points</em> introduced earlier in this page,
this is expressed as:
\[
C' = \Big(1 - \frac{b}{a+b} \Big) A + \frac{b}{a+b} B
= \frac{a}{a+b} A + \frac{b}{a+b} B.
\]
Since $O = (1-t)C + tC'$ for some $t$, we arrive at:
\[
O = (1-t)C + t\Big[ \frac{a}{a+b} A + \frac{b}{a+b} B \Big].
\]
This expresses the triangle's incenter $O$ in terms of its vertices,
sides lengths, and a yet unknown quantity $t$ that takes values in the range
0 to 1.
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="400" height="300">
<param name="background" value="ffffff">
<param name="title" value="The incenter via algebra">
<param name="e[1]" value="A;point;fixed;100,250">
<param name="e[2]" value="B;point;fixed;300,250">
<param name="e[3]" value="C;point;free;50,50;red;red">
<param name="e[4]" value="ABC;polygon;triangle;A,B,C">
<param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none">
<param name="e[6]" value="C';point;proportion;A,pt1,A,C,A,B,A,B">
<param name="e[7]" value="pt2;point;extend;B,A,A,C;none;none">
<param name="e[8]" value="A';point;proportion;B,pt2,B,A,B,C,B,C;none;none">
<param name="e[9]" value="pt3;point;extend;C,B,B,A;none;none">
<param name="e[10]" value="B';point;proportion;C,pt3,C,B,C,A,C,A;none;none">
<param name="e[11]" value="AA';line;connect;A,A';none;none;none">
<param name="e[12]" value="BB';line;connect;B,B';none;none;none">
<param name="e[13]" value="CC';line;connect;C,C';none;none;magenta">
<param name="e[14]" value="O;point;intersection;AA',BB'">
<param name="e[15]" value="H;point;foot;O,A,B;none;none">
<param name="e[16]" value="IC;circle;radius;O,H;none;none;black;none">
</applet>
</td></tr>
<tr><td>
<b>
Drag $C$ to change the geometry.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
</b>
</td></tr></table>
<p>
If we repeat the same calculation by replacing the vertex $C$ by vertex $A$,
we arrive at:
\[
O = (1-s)A + s\Big[ \frac{b}{b+c} B + \frac{c}{b+c} C \Big],
\]
where $s$ is yet another unknown that takes values in the range from 0 to 1.
<p>
Equating the two expressions for $O$ and collecting the terms, we arrive at:
\[
\Big[\frac{ta}{a+b} + s - 1\Big] A
+
\Big[\frac{tb}{a+b} - \frac{sb}{b+c} \Big] B
+
\Big[1 - t - \frac{sc}{b+c} \Big] C = 0.
\]
In this equations,
if the coefficient of $C$ is nonzero, then we may solve for $C$,
obtaining $C = \alpha A + \beta B$ for some $\alpha$
and $\beta$. But this would
mean that $C$ lies along the line $AB$ which would mean the the
three points $A$, $B$ and $C$ are collinear, therefore the
triangle $ABC$ is degenerate. We conclude that if the triangle is
non-degenerate, then the coefficient of $C$ is zero. Similar
arguments show that the coefficients of $A$ and $B$ are zero.
Thus, the following system of three equations hold:
\[
\frac{ta}{a+b} + s - 1 = 0,
\quad
\frac{tb}{a+b} - \frac{sb}{b+c} = 0,
\quad
1 - t - \frac{sc}{b+c} = 0.
\]
Solving this system for the unknowns $t$ and $s$ we obtain:
\[
t = \frac{a+b}{a+b+c}, \quad s = \frac{b+c}{a+b+c}.
\]
Substituting these in either of the expressions for $O$ we arrive at:
\[
O = \frac{a}{a+b+C}A + \frac{b}{a+b+C}B + \frac{c}{a+b+C}C,
\]
which is equivalent to Proposition&nbsp;1's
assertion.&nbsp;&nbsp;&nbsp;<b>QED</b>
<h2>Extension to tetrahedra</h2>
<p>
Propositions 1 extends to tetrahedra:
<p>
<b>Proposition 3</b>
Let
$a$, $b$, $c$, $d$
be the areas of the faces opposite to the vertices
$A$, $B$, $C$, $D$ of the tetrahedron $ABCD$. The the tetrahedron's
incenter $O$ is given by:
\[
O
= \frac{a}{\mathcal{A}} A
+ \frac{b}{\mathcal{A}} B
+ \frac{c}{\mathcal{A}} C
+ \frac{d}{\mathcal{A}} D,
\]
where $\mathcal{A} = a + b + c + d$ is the tetrahedron's surface area.
<p>
This is proved with the aid of the following extension of Proposition&nbsp;2:
<p>
<b>Proposition 4</b>
<i>
Let
$a$, $b$, $c$, $d$
be the areas of the faces opposite to the vertices
$A$, $B$, $C$, $D$ of the tetrahedron $ABCD$.
Let the bisector plane of the (internal) dihedral angle of edge $CD$
intersect edge $AB$ at point $P$.
The we have:
\[
\frac{PA}{PB} = \frac{b}{a}.
\]
</i>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="400" height="300">
<param name="background" value="ffffff">
<param name="title" value="Triangle's incenter">
<param name="e[1]" value="A;point;fixed;100,250,300">
<param name="e[2]" value="B;point;fixed;300,250,300">
<param name="e[3]" value="C;point;fixed;350,200,-400">
<param name="e[4]" value="D;point;free;200,40;red;red">
<param name="e[5]" value="ABCD;polyhedron;tetrahedron;A,B,C,D">
<param name="e[6]" value="ABC;plane;3points;A,B,C;none;none;none;none">
<!-- construct the bisector of the dihedral angle with edge DC -->
<param name="e[7]" value="pl1;plane;perpendicular;D,C;none;none;none;none">
<param name="e[8]" value="Apl1;point;foot;A,pl1;none;none">
<param name="e[9]" value="Bpl1;point;foot;B,pl1;none;none">
<param name="e[10]" value="pt1;point;angleBisector;Apl1,D,Bpl1,pl1;none;none">
<param name="e[11]" value="tmp1;plane;3points;D,C,pt1;none;none;none;none">
<param name="e[12]" value="P;point;intersection;A,B,tmp1">
<param name="e[13]" value="DP;line;connect;D,P;none;none;cyan">
<param name="e[14]" value="CP;line;connect;C,P;none;none;cyan">
</applet>
</td></tr>
<tr><td>
<b>
Drag $D$ to change the geometry.<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The plane $CDP$ bisects the dihedral angle of edge $CD$.
</b>
</td></tr></table>
<p>
I leave the proofs to you, the diligent reader. You will find
useful information in a
<a
href="http://groups.google.com/group/sci.math/browse_thread/thread/56c187e018a85111/436f448dfab35a83">discussion
in the sci.math newsgroup</a> from January 17, 2006.
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a>
on June 26, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html">Geometry Problems and Puzzles</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>