archematics/public/rostamian/trisect-dudley.html

170 lines
5.9 KiB
HTML
Raw Permalink Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- fix buggy IE8, especially for mathjax -->
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>An angle trisection</title>
<link rel="stylesheet" type="text/css" media="screen" href="style.css">
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js">
MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} );
</script>
</head>
<body style="visibility:hidden">
<h1>An angle trisection</h1>
<h4>From page 26 of<br>
Underwood Dudley, <i>The Trisectors</i>, 2nd edition, 1996.
</h4>
<table class="centered">
<tr><td align="center">
<applet code="Geometry" archive="Geometry.zip" width="600" height="250">
<param name="background" value="ffffff">
<param name="title" value="An angle trisection">
<param name="e[1]" value="O;point;fixed;50,200">
<param name="e[2]" value="A;point;fixed;200,200">
<param name="e[3]" value="C;point;extend;O,A,O,A">
<param name="e[4]" value="D;point;extend;O,C,O,A">
<param name="e[5]" value="AD;line;connect;A,D;none;none;lightGray">
<param name="e[6]" value="OA;line;connect;O,A;none;none;blue">
<param name="e[7]" value="c0;circle;radius;O,A;none;none;none;none">
<param name="e[8]" value="B;point;circleSlider;c0,70,100;red;red">
<param name="e[9]" value="OB;line;connect;O,B;none;none;blue">
<param name="e[10]" value="arcAB;sector;sector;O,A,B;none;none;blue;none">
<param name="e[11]" value="L;line;parallel;B,O,D;none;none;black">
<param name="e[12]" value="circDE;circle;radius;C,D;none;none;none;none">
<param name="e[13]" value="x8;line;chord;L,circDE;none;none;none">
<param name="e[14]" value="E;point;last;x8">
<param name="e[15]" value="CE;line;connect;C,E;none;none;lightGray">
<param name="e[16]" value="arcDE;sector;sector;C,D,E;none;none;lightGray;none">
<param name="e[17]" value="F;point;foot;E,AD">
<param name="e[18]" value="EF;line;connect;E,F;none;none;lightGray">
<param name="e[19]" value="circFT;circle;radius;O,F;none;none;none;none">
<param name="e[20]" value="x13;line;chord;L,circFT;none;none;none">
<param name="e[21]" value="T;point;first;x13">
<param name="e[22]" value="OT;line;connect;O,T;none;none;red">
<param name="e[23]" value="arcFT;sector;sector;O,F,T;none;none;green;none">
<param name="e[24]" value="circOA;circle;radius;O,A;none;none;none">
<param name="e[25]" value="x2;line;chord;OT,circOA;none;none;none">
<param name="e[26]" value="P;point;first;x2;none;none;none">
<param name="e[27]" value="p1;point;fixed;80,200;none;none">
<param name="e[28]" value="c1;circle;radius;O,p1;none;none;none;none">
<param name="e[29]" value="l1;line;chord;OA,c1;none;none;none">
<param name="e[30]" value="q1;point;first;l1;none;none">
<param name="e[31]" value="l2;line;chord;OT,c1;none;none;none">
<param name="e[32]" value="q2;point;first;l2;none;none">
<param name="e[33]" value="s1;sector;sector;O,q1,q2;none;none;black;orange">
<param name="e[34]" value="p2;point;fixed;80,200;none;none">
<param name="e[35]" value="c2;circle;radius;O,p2;none;none;none;none">
<param name="e[36]" value="l3;line;chord;OT,c2;none;none;none">
<param name="e[37]" value="q3;point;first;l3;none;none">
<param name="e[38]" value="l4;line;chord;OB,c2;none;none;none">
<param name="e[39]" value="q4;point;first;l4;none;none">
<param name="e[40]" value="s2;sector;sector;O,q3,q4;none;none;black;yellow">
</applet>
</td></tr>
<tr><td>
<b>
Drag the point $B$ to change the angle $AOB$
(but keep it less than 90 degrees).<br>
Press &ldquo;r&rdquo; to reset the diagram to its initial state.<br>
The red line, $OT$, is an approximate trisector of the angle $AOB$.
</b>
</td></tr></table>
<h2>Construction</h2>
<p>
We wish to trisect the given angle $AOB$. Assume the angle is less than
90 degrees; see the diagram above.
<ol>
<li>
Draw a line through $B$ parallel to $OA$.
<li>
Extend $OA$ and mark off $AC$ and $CD$ along it, each equal to $OA$.
<li>
Draw the arc $DE$ with center $C$ and radius $CD$.
<li>
Drop a perpendicular from $E$ to $OD$ and let $F$ be the foot of the perpendicular.
<li>
Draw the arc $FT$ with center $O$ and radius $OF$ (shown in green).
</ol>
The line $OT$ is an approximate trisector of the angle $AOB$.
<h2>Error Analysis</h2>
<p>
Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $FOT$,
respectively. It is straightforward to show that
\[
\beta
= \frac{\sin \alpha}{2+\cos \alpha}
= \frac{\alpha}{3} - \frac{1}{2^2 \cdot 3^3 \cdot 5} \alpha^5 +
O(\alpha^7)
= \frac{\alpha}{3} - \frac{1}{540} \alpha^5 + O(\alpha^7).
\]
The error
$
\ds e(\alpha) = \frac{\alpha}{3} - \beta
$
is monotonically increasing in $\alpha$.
The worst error on the interval $0 \le \alpha \le \pi/2$ is
$e(\pi/2) =$ 0.0236 radians = 1.352 degrees.
<p>
It is interesting that the error is $O(\alpha^5)$ rather than $O(\alpha^3)$
as one might have expected. Despite this, the method's accuracy
is not particularly remarkable for angles that are not very close to zero.
<hr width="60%">
<p>
<em>This applet was created by
<a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a>
using
<a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s
<a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry
Applet</a>
on July 26, 2002.<br>
Cosmetic revisions on June 6, 2010.
</em>
<p>
<table width="100%">
<tr>
<td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td>
<td align="right" style="width:200px;">
<a href="http://validator.w3.org/check?uri=referer">
<img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a>
<a href="http://jigsaw.w3.org/css-validator/check/referer">
<img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a>
</td></tr>
</table>
</body>
</html>