CaRMtl/rene/util/PngEncoder.java
2018-09-04 22:51:42 -04:00

648 lines
19 KiB
Java

/*
Copyright 2006 Rene Grothmann, modified by Eric Hakenholz
This file is part of C.a.R. software.
C.a.R. is a free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.
C.a.R. is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package rene.util;
/**
* PngEncoder takes a Java Image object and creates a byte string which can be saved as a PNG file.
* The Image is presumed to use the DirectColorModel.
*
* Thanks to Jay Denny at KeyPoint Software
* http://www.keypoint.com/
* who let me develop this code on company time.
*
* You may contact me with (probably very-much-needed) improvements,
* comments, and bug fixes at:
*
* david@catcode.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* A copy of the GNU LGPL may be found at
* http://www.gnu.org/copyleft/lesser.html,
*
* @author J. David Eisenberg
* @version 1.4, 31 March 2000
*/
import java.awt.Image;
import java.awt.image.ImageObserver;
import java.awt.image.PixelGrabber;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.zip.CRC32;
import java.util.zip.Deflater;
import java.util.zip.DeflaterOutputStream;
public class PngEncoder extends Object {
/** Constant specifying that alpha channel should be encoded. */
public static final boolean ENCODE_ALPHA = true;
/** Constant specifying that alpha channel should not be encoded. */
public static final boolean NO_ALPHA = false;
/** Constants for filters */
public static final int FILTER_NONE = 0;
public static final int FILTER_SUB = 1;
public static final int FILTER_UP = 2;
public static final int FILTER_LAST = 2;
protected byte[] pngBytes;
protected byte[] priorRow;
protected byte[] leftBytes;
protected Image image;
protected int width, height;
protected int bytePos, maxPos;
protected int hdrPos, dataPos, endPos;
protected CRC32 crc = new CRC32();
protected long crcValue;
protected boolean encodeAlpha;
protected int filter;
protected int bytesPerPixel;
protected int compressionLevel;
protected double DPI = 300;
/**
* Class constructor
*
*/
public PngEncoder() {
this(null, false, FILTER_NONE, 0);
}
/**
* Class constructor specifying Image to encode, with no alpha channel
* encoding.
*
* @param image
* A Java Image object which uses the DirectColorModel
* @see java.awt.Image
*/
public PngEncoder(final Image image) {
this(image, false, FILTER_NONE, 0);
}
/**
* Class constructor specifying Image to encode, and whether to encode
* alpha.
*
* @param image
* A Java Image object which uses the DirectColorModel
* @param encodeAlpha
* Encode the alpha channel? false=no; true=yes
* @see java.awt.Image
*/
public PngEncoder(final Image image, final boolean encodeAlpha) {
this(image, encodeAlpha, FILTER_NONE, 0);
}
/**
* Class constructor specifying Image to encode, whether to encode alpha,
* and filter to use.
*
* @param image
* A Java Image object which uses the DirectColorModel
* @param encodeAlpha
* Encode the alpha channel? false=no; true=yes
* @param whichFilter
* 0=none, 1=sub, 2=up
* @see java.awt.Image
*/
public PngEncoder(final Image image, final boolean encodeAlpha,
final int whichFilter) {
this(image, encodeAlpha, whichFilter, 0);
}
/**
* Class constructor specifying Image source to encode, whether to encode
* alpha, filter to use, and compression level.
*
* @param image
* A Java Image object
* @param encodeAlpha
* Encode the alpha channel? false=no; true=yes
* @param whichFilter
* 0=none, 1=sub, 2=up
* @param compLevel
* 0..9
* @see java.awt.Image
*/
public PngEncoder(final Image image, final boolean encodeAlpha,
final int whichFilter, final int compLevel) {
this.image = image;
this.encodeAlpha = encodeAlpha;
setFilter(whichFilter);
if (compLevel >= 0 && compLevel <= 9) {
this.compressionLevel = compLevel;
}
}
/**
* Set the image to be encoded
*
* @param image
* A Java Image object which uses the DirectColorModel
* @see java.awt.Image
* @see java.awt.image.DirectColorModel
*/
public void setImage(final Image image) {
this.image = image;
pngBytes = null;
}
public void setDPI(final double dpi) {
DPI = dpi;
}
/**
* Creates an array of bytes that is the PNG equivalent of the current
* image, specifying whether to encode alpha or not.
*
* @param encodeAlpha
* boolean false=no alpha, true=encode alpha
* @return an array of bytes, or null if there was a problem
*/
public byte[] pngEncode(final boolean encodeAlpha) {
final byte[] pngIdBytes = { -119, 80, 78, 71, 13, 10, 26, 10 };
if (image == null) {
return null;
}
width = image.getWidth(null);
height = image.getHeight(null);
/*
* start with an array that is big enough to hold all the pixels (plus
* filter bytes), and an extra 200 bytes for header info
*/
pngBytes = new byte[((width + 1) * height * 3) + 200];
/*
* keep track of largest byte written to the array
*/
maxPos = 0;
bytePos = writeBytes(pngIdBytes, 0);
hdrPos = bytePos;
writeHeader();
writePhys();
dataPos = bytePos;
if (writeImageData()) {
writeEnd();
pngBytes = resizeByteArray(pngBytes, maxPos);
} else {
pngBytes = null;
}
return pngBytes;
}
/**
* Creates an array of bytes that is the PNG equivalent of the current
* image. Alpha encoding is determined by its setting in the constructor.
*
* @return an array of bytes, or null if there was a problem
*/
public byte[] pngEncode() {
return pngEncode(encodeAlpha);
}
/**
* Set the alpha encoding on or off.
*
* @param encodeAlpha
* false=no, true=yes
*/
public void setEncodeAlpha(final boolean encodeAlpha) {
this.encodeAlpha = encodeAlpha;
}
/**
* Retrieve alpha encoding status.
*
* @return boolean false=no, true=yes
*/
public boolean getEncodeAlpha() {
return encodeAlpha;
}
/**
* Set the filter to use
*
* @param whichFilter
* from constant list
*/
public void setFilter(final int whichFilter) {
this.filter = FILTER_NONE;
if (whichFilter <= FILTER_LAST) {
this.filter = whichFilter;
}
}
/**
* Retrieve filtering scheme
*
* @return int (see constant list)
*/
public int getFilter() {
return filter;
}
/**
* Set the compression level to use
*
* @param level
* 0 through 9
*/
public void setCompressionLevel(final int level) {
if (level >= 0 && level <= 9) {
this.compressionLevel = level;
}
}
/**
* Retrieve compression level
*
* @return int in range 0-9
*/
public int getCompressionLevel() {
return compressionLevel;
}
/**
* Increase or decrease the length of a byte array.
*
* @param array
* The original array.
* @param newLength
* The length you wish the new array to have.
* @return Array of newly desired length. If shorter than the original, the
* trailing elements are truncated.
*/
protected byte[] resizeByteArray(final byte[] array, final int newLength) {
final byte[] newArray = new byte[newLength];
final int oldLength = array.length;
System.arraycopy(array, 0, newArray, 0, Math.min(oldLength, newLength));
return newArray;
}
/**
* Write an array of bytes into the pngBytes array. Note: This routine has
* the side effect of updating maxPos, the largest element written in the
* array. The array is resized by 1000 bytes or the length of the data to be
* written, whichever is larger.
*
* @param data
* The data to be written into pngBytes.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeBytes(final byte[] data, final int offset) {
maxPos = Math.max(maxPos, offset + data.length);
if (data.length + offset > pngBytes.length) {
pngBytes = resizeByteArray(pngBytes, pngBytes.length
+ Math.max(1000, data.length));
}
System.arraycopy(data, 0, pngBytes, offset, data.length);
return offset + data.length;
}
/**
* Write an array of bytes into the pngBytes array, specifying number of
* bytes to write. Note: This routine has the side effect of updating
* maxPos, the largest element written in the array. The array is resized by
* 1000 bytes or the length of the data to be written, whichever is larger.
*
* @param data
* The data to be written into pngBytes.
* @param nBytes
* The number of bytes to be written.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeBytes(final byte[] data, final int nBytes,
final int offset) {
maxPos = Math.max(maxPos, offset + nBytes);
if (nBytes + offset > pngBytes.length) {
pngBytes = resizeByteArray(pngBytes, pngBytes.length
+ Math.max(1000, nBytes));
}
System.arraycopy(data, 0, pngBytes, offset, nBytes);
return offset + nBytes;
}
/**
* Write a two-byte integer into the pngBytes array at a given position.
*
* @param n
* The integer to be written into pngBytes.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeInt2(final int n, final int offset) {
final byte[] temp = { (byte) ((n >> 8) & 0xff), (byte) (n & 0xff) };
return writeBytes(temp, offset);
}
/**
* Write a four-byte integer into the pngBytes array at a given position.
*
* @param n
* The integer to be written into pngBytes.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeInt4(final int n, final int offset) {
final byte[] temp = { (byte) ((n >> 24) & 0xff),
(byte) ((n >> 16) & 0xff), (byte) ((n >> 8) & 0xff),
(byte) (n & 0xff) };
return writeBytes(temp, offset);
}
/**
* Write a single byte into the pngBytes array at a given position.
*
* @param n
* The integer to be written into pngBytes.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeByte(final int b, final int offset) {
final byte[] temp = { (byte) b };
return writeBytes(temp, offset);
}
/**
* Write a string into the pngBytes array at a given position. This uses the
* getBytes method, so the encoding used will be its default.
*
* @param n
* The integer to be written into pngBytes.
* @param offset
* The starting point to write to.
* @return The next place to be written to in the pngBytes array.
* @see java.lang.String#getBytes()
*/
protected int writeString(final String s, final int offset) {
return writeBytes(s.getBytes(), offset);
}
/**
* Write a PNG "IHDR" chunk into the pngBytes array.
*/
protected void writeHeader() {
int startPos;
startPos = bytePos = writeInt4(13, bytePos);
bytePos = writeString("IHDR", bytePos);
width = image.getWidth(null);
height = image.getHeight(null);
bytePos = writeInt4(width, bytePos);
bytePos = writeInt4(height, bytePos);
bytePos = writeByte(8, bytePos); // bit depth
bytePos = writeByte((encodeAlpha) ? 6 : 2, bytePos); // direct model
bytePos = writeByte(0, bytePos); // compression method
bytePos = writeByte(0, bytePos); // filter method
bytePos = writeByte(0, bytePos); // no interlace
crc.reset();
crc.update(pngBytes, startPos, bytePos - startPos);
crcValue = crc.getValue();
bytePos = writeInt4((int) crcValue, bytePos);
}
/**
* Write a PNG "pHYs" chunk into the pngBytes array.
*/
protected void writePhys() {
int startPos;
startPos = bytePos = writeInt4(9, bytePos);
bytePos = writeString("pHYs", bytePos);
final int dots = (int) (DPI * 39.37);
bytePos = writeInt4(dots, bytePos);
bytePos = writeInt4(dots, bytePos);
bytePos = writeByte(1, bytePos); // bit depth
crc.reset();
crc.update(pngBytes, startPos, bytePos - startPos);
crcValue = crc.getValue();
bytePos = writeInt4((int) crcValue, bytePos);
}
/**
* Perform "sub" filtering on the given row. Uses temporary array leftBytes
* to store the original values of the previous pixels. The array is 16
* bytes long, which will easily hold two-byte samples plus two-byte alpha.
*
* @param pixels
* The array holding the scan lines being built
* @param startPos
* Starting position within pixels of bytes to be filtered.
* @param width
* Width of a scanline in pixels.
*/
protected void filterSub(final byte[] pixels, final int startPos,
final int width) {
int i;
final int offset = bytesPerPixel;
final int actualStart = startPos + offset;
final int nBytes = width * bytesPerPixel;
int leftInsert = offset;
int leftExtract = 0;
for (i = actualStart; i < startPos + nBytes; i++) {
leftBytes[leftInsert] = pixels[i];
pixels[i] = (byte) ((pixels[i] - leftBytes[leftExtract]) % 256);
leftInsert = (leftInsert + 1) % 0x0f;
leftExtract = (leftExtract + 1) % 0x0f;
}
}
/**
* Perform "up" filtering on the given row. Side effect: refills the prior
* row with current row
*
* @param pixels
* The array holding the scan lines being built
* @param startPos
* Starting position within pixels of bytes to be filtered.
* @param width
* Width of a scanline in pixels.
*/
protected void filterUp(final byte[] pixels, final int startPos,
final int width) {
int i, nBytes;
byte current_byte;
nBytes = width * bytesPerPixel;
for (i = 0; i < nBytes; i++) {
current_byte = pixels[startPos + i];
pixels[startPos + i] = (byte) ((pixels[startPos + i] - priorRow[i]) % 256);
priorRow[i] = current_byte;
}
}
/**
* Write the image data into the pngBytes array. This will write one or more
* PNG "IDAT" chunks. In order to conserve memory, this method grabs as many
* rows as will fit into 32K bytes, or the whole image; whichever is less.
*
*
* @return true if no errors; false if error grabbing pixels
*/
protected boolean writeImageData() {
int rowsLeft = height; // number of rows remaining to write
int startRow = 0; // starting row to process this time through
int nRows; // how many rows to grab at a time
byte[] scanLines; // the scan lines to be compressed
int scanPos; // where we are in the scan lines
int startPos; // where this line's actual pixels start (used for
// filtering)
byte[] compressedLines; // the resultant compressed lines
int nCompressed; // how big is the compressed area?
PixelGrabber pg;
bytesPerPixel = (encodeAlpha) ? 4 : 3;
final Deflater scrunch = new Deflater(compressionLevel);
final ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024);
final DeflaterOutputStream compBytes = new DeflaterOutputStream(
outBytes, scrunch);
try {
nRows = (64 * 32768 - 1) / (width * (bytesPerPixel + 1));
final int[] pixels = new int[width * nRows];
while (rowsLeft > 0) {
if (nRows >= rowsLeft)
nRows = rowsLeft;
pg = new PixelGrabber(image, 0, startRow, width, nRows, pixels,
0, width);
try {
pg.grabPixels();
} catch (final Exception e) {
System.err.println("interrupted waiting for pixels!");
return false;
}
if ((pg.getStatus() & ImageObserver.ABORT) != 0) {
System.err.println("image fetch aborted or errored");
return false;
}
/*
* Create a data chunk. scanLines adds "nRows" for the filter
* bytes.
*/
scanLines = new byte[width * nRows * bytesPerPixel + nRows];
if (filter == FILTER_SUB) {
leftBytes = new byte[16];
}
if (filter == FILTER_UP) {
priorRow = new byte[width * bytesPerPixel];
}
scanPos = 0;
startPos = 1;
for (int i = 0; i < width * nRows; i++) {
if (i % width == 0) {
scanLines[scanPos++] = (byte) filter;
startPos = scanPos;
}
scanLines[scanPos++] = (byte) ((pixels[i] >> 16) & 0xff);
scanLines[scanPos++] = (byte) ((pixels[i] >> 8) & 0xff);
scanLines[scanPos++] = (byte) ((pixels[i]) & 0xff);
if (encodeAlpha) {
scanLines[scanPos++] = (byte) ((pixels[i] >> 24) & 0xff);
}
if ((i % width == width - 1) && (filter != FILTER_NONE)) {
if (filter == FILTER_SUB) {
filterSub(scanLines, startPos, width);
}
if (filter == FILTER_UP) {
filterUp(scanLines, startPos, width);
}
}
}
/*
* Write these lines to the output area
*/
compBytes.write(scanLines, 0, scanPos);
startRow += nRows;
rowsLeft -= nRows;
}
compBytes.close();
/*
* Write the compressed bytes
*/
compressedLines = outBytes.toByteArray();
nCompressed = compressedLines.length;
crc.reset();
bytePos = writeInt4(nCompressed, bytePos);
bytePos = writeString("IDAT", bytePos);
crc.update("IDAT".getBytes());
bytePos = writeBytes(compressedLines, nCompressed, bytePos);
crc.update(compressedLines, 0, nCompressed);
crcValue = crc.getValue();
bytePos = writeInt4((int) crcValue, bytePos);
scrunch.finish();
return true;
} catch (final IOException e) {
System.err.println(e.toString());
return false;
}
}
/**
* Write a PNG "IEND" chunk into the pngBytes array.
*/
protected void writeEnd() {
bytePos = writeInt4(0, bytePos);
bytePos = writeString("IEND", bytePos);
crc.reset();
crc.update("IEND".getBytes());
crcValue = crc.getValue();
bytePos = writeInt4((int) crcValue, bytePos);
}
}