forked from StudioInfinity/dyna3
feat: Engine diagnostics (#92)
Adds a `Diagnostics` component that shows the following diagnostics from the last realization: - Confirmation of success or a short description of what failed. - The value of the loss function at each step. - The spectrum of the Hessian at each step. The loss and spectrum plots are shown on switchable panels. Also includes some refactoring/renaming of existing code. Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo> Reviewed-on: StudioInfinity/dyna3#92 Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net> Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
parent
4cb3262555
commit
5864017e6f
17 changed files with 1120 additions and 150 deletions
|
@ -256,18 +256,18 @@ pub struct DescentHistory {
|
|||
pub config: Vec<DMatrix<f64>>,
|
||||
pub scaled_loss: Vec<f64>,
|
||||
pub neg_grad: Vec<DMatrix<f64>>,
|
||||
pub min_eigval: Vec<f64>,
|
||||
pub hess_eigvals: Vec::<DVector<f64>>,
|
||||
pub base_step: Vec<DMatrix<f64>>,
|
||||
pub backoff_steps: Vec<i32>
|
||||
}
|
||||
|
||||
impl DescentHistory {
|
||||
fn new() -> DescentHistory {
|
||||
pub fn new() -> DescentHistory {
|
||||
DescentHistory {
|
||||
config: Vec::<DMatrix<f64>>::new(),
|
||||
scaled_loss: Vec::<f64>::new(),
|
||||
neg_grad: Vec::<DMatrix<f64>>::new(),
|
||||
min_eigval: Vec::<f64>::new(),
|
||||
hess_eigvals: Vec::<DVector<f64>>::new(),
|
||||
base_step: Vec::<DMatrix<f64>>::new(),
|
||||
backoff_steps: Vec::<i32>::new(),
|
||||
}
|
||||
|
@ -393,6 +393,17 @@ fn seek_better_config(
|
|||
None
|
||||
}
|
||||
|
||||
// a first-order neighborhood of a configuration
|
||||
pub struct ConfigNeighborhood {
|
||||
pub config: DMatrix<f64>,
|
||||
pub nbhd: ConfigSubspace
|
||||
}
|
||||
|
||||
pub struct Realization {
|
||||
pub result: Result<ConfigNeighborhood, String>,
|
||||
pub history: DescentHistory
|
||||
}
|
||||
|
||||
// seek a matrix `config` that matches the partial matrix `problem.frozen` and
|
||||
// has `config' * Q * config` matching the partial matrix `problem.gram`. start
|
||||
// at `problem.guess`, set the frozen entries to their desired values, and then
|
||||
|
@ -405,7 +416,7 @@ pub fn realize_gram(
|
|||
reg_scale: f64,
|
||||
max_descent_steps: i32,
|
||||
max_backoff_steps: i32
|
||||
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
) -> Realization {
|
||||
// destructure the problem data
|
||||
let ConstraintProblem {
|
||||
gram, guess, frozen
|
||||
|
@ -457,11 +468,12 @@ pub fn realize_gram(
|
|||
hess = DMatrix::from_columns(hess_cols.as_slice());
|
||||
|
||||
// regularize the Hessian
|
||||
let min_eigval = hess.symmetric_eigenvalues().min();
|
||||
let hess_eigvals = hess.symmetric_eigenvalues();
|
||||
let min_eigval = hess_eigvals.min();
|
||||
if min_eigval <= 0.0 {
|
||||
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
||||
}
|
||||
history.min_eigval.push(min_eigval);
|
||||
history.hess_eigvals.push(hess_eigvals);
|
||||
|
||||
// project the negative gradient and negative Hessian onto the
|
||||
// orthogonal complement of the frozen subspace
|
||||
|
@ -480,30 +492,40 @@ pub fn realize_gram(
|
|||
if state.loss < tol { break; }
|
||||
|
||||
// compute the Newton step
|
||||
/* TO DO */
|
||||
/*
|
||||
we need to either handle or eliminate the case where the minimum
|
||||
eigenvalue of the Hessian is zero, so the regularized Hessian is
|
||||
singular. right now, this causes the Cholesky decomposition to return
|
||||
`None`, leading to a panic when we unrap
|
||||
we should change our regularization to ensure that the Hessian is
|
||||
is positive-definite, rather than just positive-semidefinite. ideally,
|
||||
that would guarantee the success of the Cholesky decomposition---
|
||||
although we'd still need the error-handling routine in case of
|
||||
numerical hiccups
|
||||
*/
|
||||
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
|
||||
let hess_cholesky = match hess.clone().cholesky() {
|
||||
Some(cholesky) => cholesky,
|
||||
None => return Realization {
|
||||
result: Err("Cholesky decomposition failed".to_string()),
|
||||
history
|
||||
}
|
||||
};
|
||||
let base_step_stacked = hess_cholesky.solve(&neg_grad_stacked);
|
||||
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
||||
history.base_step.push(base_step.clone());
|
||||
|
||||
// use backtracking line search to find a better configuration
|
||||
match seek_better_config(
|
||||
if let Some((better_state, backoff_steps)) = seek_better_config(
|
||||
gram, &state, &base_step, neg_grad.dot(&base_step),
|
||||
min_efficiency, backoff, max_backoff_steps
|
||||
) {
|
||||
Some((better_state, backoff_steps)) => {
|
||||
state = better_state;
|
||||
history.backoff_steps.push(backoff_steps);
|
||||
},
|
||||
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
|
||||
state = better_state;
|
||||
history.backoff_steps.push(backoff_steps);
|
||||
} else {
|
||||
return Realization {
|
||||
result: Err("Line search failed".to_string()),
|
||||
history
|
||||
}
|
||||
};
|
||||
}
|
||||
let success = state.loss < tol;
|
||||
let tangent = if success {
|
||||
let result = if state.loss < tol {
|
||||
// express the uniform basis in the standard basis
|
||||
const UNIFORM_DIM: usize = 4;
|
||||
let total_dim_unif = UNIFORM_DIM * assembly_dim;
|
||||
|
@ -516,11 +538,13 @@ pub fn realize_gram(
|
|||
}
|
||||
|
||||
// find the kernel of the Hessian. give it the uniform inner product
|
||||
ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim)
|
||||
let tangent = ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim);
|
||||
|
||||
Ok(ConfigNeighborhood { config: state.config, nbhd: tangent })
|
||||
} else {
|
||||
ConfigSubspace::zero(assembly_dim)
|
||||
Err("Failed to reach target accuracy".to_string())
|
||||
};
|
||||
(state.config, tangent, success, history)
|
||||
Realization { result, history }
|
||||
}
|
||||
|
||||
// --- tests ---
|
||||
|
@ -539,7 +563,7 @@ pub mod examples {
|
|||
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
||||
// https://www.nippon.com/en/japan-topics/c12801/
|
||||
//
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> Realization {
|
||||
let mut problem = ConstraintProblem::from_guess(
|
||||
[
|
||||
sphere(0.0, 0.0, 0.0, 15.0),
|
||||
|
@ -590,7 +614,7 @@ pub mod examples {
|
|||
|
||||
// set up a kaleidocycle, made of points with fixed distances between them,
|
||||
// and find its tangent space
|
||||
pub fn realize_kaleidocycle(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
pub fn realize_kaleidocycle(scaled_tol: f64) -> Realization {
|
||||
const N_HINGES: usize = 6;
|
||||
let mut problem = ConstraintProblem::from_guess(
|
||||
(0..N_HINGES).step_by(2).flat_map(
|
||||
|
@ -714,10 +738,10 @@ mod tests {
|
|||
}
|
||||
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
|
||||
problem.frozen.push(3, 1, 0.5);
|
||||
let (config, _, success, history) = realize_gram(
|
||||
let Realization { result, history } = realize_gram(
|
||||
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(success, true);
|
||||
let config = result.unwrap().config;
|
||||
for base_step in history.base_step.into_iter() {
|
||||
for &MatrixEntry { index, .. } in &problem.frozen {
|
||||
assert_eq!(base_step[index], 0.0);
|
||||
|
@ -732,7 +756,7 @@ mod tests {
|
|||
fn irisawa_hexlet_test() {
|
||||
// solve Irisawa's problem
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
|
||||
let config = realize_irisawa_hexlet(SCALED_TOL).result.unwrap().config;
|
||||
|
||||
// check against Irisawa's solution
|
||||
let entry_tol = SCALED_TOL.sqrt();
|
||||
|
@ -759,11 +783,11 @@ mod tests {
|
|||
for n in 0..ELEMENT_DIM {
|
||||
problem.frozen.push(n, 0, problem.guess[(n, 0)]);
|
||||
}
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
let Realization { result, history } = realize_gram(
|
||||
&problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
let ConfigNeighborhood { config, nbhd: tangent } = result.unwrap();
|
||||
assert_eq!(config, problem.guess);
|
||||
assert_eq!(success, true);
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
// list some motions that should form a basis for the tangent space of
|
||||
|
@ -831,8 +855,8 @@ mod tests {
|
|||
fn tangent_test_kaleidocycle() {
|
||||
// set up a kaleidocycle and find its tangent space
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, tangent, success, history) = realize_kaleidocycle(SCALED_TOL);
|
||||
assert_eq!(success, true);
|
||||
let Realization { result, history } = realize_kaleidocycle(SCALED_TOL);
|
||||
let ConfigNeighborhood { config, nbhd: tangent } = result.unwrap();
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
// list some motions that should form a basis for the tangent space of
|
||||
|
@ -920,11 +944,11 @@ mod tests {
|
|||
problem_orig.gram.push_sym(0, 0, 1.0);
|
||||
problem_orig.gram.push_sym(1, 1, 1.0);
|
||||
problem_orig.gram.push_sym(0, 1, 0.5);
|
||||
let (config_orig, tangent_orig, success_orig, history_orig) = realize_gram(
|
||||
let Realization { result: result_orig, history: history_orig } = realize_gram(
|
||||
&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
let ConfigNeighborhood { config: config_orig, nbhd: tangent_orig } = result_orig.unwrap();
|
||||
assert_eq!(config_orig, problem_orig.guess);
|
||||
assert_eq!(success_orig, true);
|
||||
assert_eq!(history_orig.scaled_loss.len(), 1);
|
||||
|
||||
// find another pair of spheres that meet at 120°. we'll think of this
|
||||
|
@ -941,11 +965,11 @@ mod tests {
|
|||
guess: guess_tfm,
|
||||
frozen: problem_orig.frozen
|
||||
};
|
||||
let (config_tfm, tangent_tfm, success_tfm, history_tfm) = realize_gram(
|
||||
let Realization { result: result_tfm, history: history_tfm } = realize_gram(
|
||||
&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
let ConfigNeighborhood { config: config_tfm, nbhd: tangent_tfm } = result_tfm.unwrap();
|
||||
assert_eq!(config_tfm, problem_tfm.guess);
|
||||
assert_eq!(success_tfm, true);
|
||||
assert_eq!(history_tfm.scaled_loss.len(), 1);
|
||||
|
||||
// project a nudge to the tangent space of the solution variety at the
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue