feat: Curvature regulators (#80)

Prior to this commit, there's only one kind of regulator: the one that regulates the inversive distance between two spheres (or, more generally, the Lorentz product between two element representation vectors). Adds a new kind of regulator, which regulates the curvature of a sphere (issue #55). In the process, introduces a general framework based on new traits for organizing and sharing code between different kinds of regulators.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#80
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
Vectornaut 2025-04-21 23:40:42 +00:00 committed by Glen Whitney
parent 23ba5acad7
commit 360ce12d8b
6 changed files with 640 additions and 331 deletions

View file

@ -1,12 +1,21 @@
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use std::{collections::BTreeSet, rc::Rc, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::{
engine::{Q, local_unif_to_std, realize_gram, ConfigSubspace, PartialMatrix},
engine::{
Q,
change_half_curvature,
local_unif_to_std,
realize_gram,
sphere,
ConfigSubspace,
ConstraintProblem
},
outline::OutlineItem,
specified::SpecifiedValue
};
@ -23,6 +32,10 @@ pub type ElementColor = [f32; 3];
// each assembly has a key that identifies it within the sesssion
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
pub trait ProblemPoser {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>);
}
#[derive(Clone, PartialEq)]
pub struct Element {
pub id: String,
@ -30,8 +43,8 @@ pub struct Element {
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
// All regulators with this element as a subject. The assembly owning
// this element is responsible for keeping this set up to date.
// the regulators this element is subject to. the assembly that owns the
// element is responsible for keeping this set up to date
pub regulators: Signal<BTreeSet<RegulatorKey>>,
// a serial number, assigned by `Element::new`, that uniquely identifies
@ -45,6 +58,8 @@ pub struct Element {
}
impl Element {
const CURVATURE_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
@ -117,13 +132,148 @@ impl Element {
}
}
#[derive(Clone, Copy)]
pub struct Regulator {
pub subjects: (ElementKey, ElementKey),
impl ProblemPoser for Element {
fn pose(&self, problem: &mut ConstraintProblem, _elts: &Slab<Element>) {
let index = self.column_index.expect(
format!("Element \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 1.0);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub trait Regulator: ProblemPoser + OutlineItem {
fn subjects(&self) -> Vec<ElementKey>;
fn measurement(&self) -> ReadSignal<f64>;
fn set_point(&self) -> Signal<SpecifiedValue>;
// this method is used to responsively precondition the assembly for
// realization when the regulator becomes a constraint, or is edited while
// acting as a constraint. it should track the set point, do any desired
// preconditioning when the set point is present, and use its return value
// to report whether the set is present. the default implementation does no
// preconditioning
fn try_activate(&self, _assembly: &Assembly) -> bool {
self.set_point().with(|set_pt| set_pt.is_present())
}
}
pub struct InversiveDistanceRegulator {
pub subjects: [ElementKey; 2],
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>
}
impl InversiveDistanceRegulator {
pub fn new(subjects: [ElementKey; 2], assembly: &Assembly) -> InversiveDistanceRegulator {
let measurement = assembly.elements.map(
move |elts| {
let representations = subjects.map(|subj| elts[subj].representation);
representations[0].with(|rep_0|
representations[1].with(|rep_1|
rep_0.dot(&(&*Q * rep_1))
)
)
}
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
InversiveDistanceRegulator { subjects, measurement, set_point }
}
}
impl Regulator for InversiveDistanceRegulator {
fn subjects(&self) -> Vec<ElementKey> {
self.subjects.into()
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
}
impl ProblemPoser for InversiveDistanceRegulator {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let [row, col] = self.subjects.map(
|subj| elts[subj].column_index.expect(
"Subjects should be indexed before inversive distance regulator writes problem data"
)
);
problem.gram.push_sym(row, col, val);
}
});
}
}
pub struct HalfCurvatureRegulator {
pub subject: ElementKey,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>
}
impl HalfCurvatureRegulator {
pub fn new(subject: ElementKey, assembly: &Assembly) -> HalfCurvatureRegulator {
let measurement = assembly.elements.map(
move |elts| elts[subject].representation.with(
|rep| rep[Element::CURVATURE_COMPONENT]
)
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
HalfCurvatureRegulator { subject, measurement, set_point }
}
}
impl Regulator for HalfCurvatureRegulator {
fn subjects(&self) -> Vec<ElementKey> {
vec![self.subject]
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
fn try_activate(&self, assembly: &Assembly) -> bool {
match self.set_point.with(|set_pt| set_pt.value) {
Some(half_curv) => {
let representation = assembly.elements.with_untracked(
|elts| elts[self.subject].representation
);
representation.update(
|rep| change_half_curvature(rep, half_curv)
);
true
}
None => false
}
}
}
impl ProblemPoser for HalfCurvatureRegulator {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = elts[self.subject].column_index.expect(
"Subject should be indexed before half-curvature regulator writes problem data"
);
problem.frozen.push(Element::CURVATURE_COMPONENT, col, val);
}
});
}
}
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> {
pub key: ElementKey,
@ -137,7 +287,7 @@ type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
pub struct Assembly {
// elements and regulators
pub elements: Signal<Slab<Element>>,
pub regulators: Signal<Slab<Regulator>>,
pub regulators: Signal<Slab<Rc<dyn Regulator>>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
@ -167,26 +317,33 @@ impl Assembly {
// --- inserting elements and regulators ---
// insert an element into the assembly without checking whether we already
// insert a sphere into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
fn insert_element_unchecked(&self, elt: Element) {
fn insert_sphere_unchecked(&self, elt: Element) -> ElementKey {
// insert the sphere
let id = elt.id.clone();
let key = self.elements.update(|elts| elts.insert(elt));
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, key));
// regulate the sphere's curvature
self.insert_regulator(HalfCurvatureRegulator::new(key, &self));
key
}
pub fn try_insert_element(&self, elt: Element) -> bool {
pub fn try_insert_sphere(&self, elt: Element) -> Option<ElementKey> {
let can_insert = self.elements_by_id.with_untracked(
|elts_by_id| !elts_by_id.contains_key(&elt.id)
);
if can_insert {
self.insert_element_unchecked(elt);
Some(self.insert_sphere_unchecked(elt))
} else {
None
}
can_insert
}
pub fn insert_new_element(&self) {
pub fn insert_new_sphere(&self) {
// find the next unused identifier in the default sequence
let mut id_num = 1;
let mut id = format!("sphere{}", id_num);
@ -197,70 +354,69 @@ impl Assembly {
id = format!("sphere{}", id_num);
}
// create and insert a new element
self.insert_element_unchecked(
// create and insert a sphere
let _ = self.insert_sphere_unchecked(
Element::new(
id,
format!("Sphere {}", id_num),
[0.75_f32, 0.75_f32, 0.75_f32],
DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5])
sphere(0.0, 0.0, 0.0, 1.0)
)
);
}
fn insert_regulator(&self, regulator: Regulator) {
let subjects = regulator.subjects;
let key = self.regulators.update(|regs| regs.insert(regulator));
let subject_regulators = self.elements.with(
|elts| (elts[subjects.0].regulators, elts[subjects.1].regulators)
pub fn insert_regulator<T: Regulator + 'static>(&self, regulator: T) {
// add the regulator to the assembly's regulator list
let regulator_rc = Rc::new(regulator);
let key = self.regulators.update(
|regs| regs.insert(regulator_rc.clone())
);
subject_regulators.0.update(|regs| regs.insert(key));
subject_regulators.1.update(|regs| regs.insert(key));
}
pub fn insert_new_regulator(self, subjects: (ElementKey, ElementKey)) {
// create and insert a new regulator
let measurement = self.elements.map(
move |elts| {
let reps = (
elts[subjects.0].representation.get_clone(),
elts[subjects.1].representation.get_clone()
);
reps.0.dot(&(&*Q * reps.1))
// add the regulator to each subject's regulator list
let subjects = regulator_rc.subjects();
let subject_regulators: Vec<_> = self.elements.with_untracked(
|elts| subjects.into_iter().map(
|subj| elts[subj].regulators
).collect()
);
for regulators in subject_regulators {
regulators.update(|regs| regs.insert(key));
}
// update the realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
let self_for_effect = self.clone();
create_effect(move || {
/* DEBUG */
// log the regulator update
console::log_1(&JsValue::from(
format!("Updated regulator with subjects {:?}", regulator_rc.subjects())
));
if regulator_rc.try_activate(&self_for_effect) {
self_for_effect.realize();
}
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
self.insert_regulator(Regulator {
subjects: subjects,
measurement: measurement,
set_point: set_point
});
/* DEBUG */
// print an updated list of regulators
console::log_1(&JsValue::from("Regulators:"));
self.regulators.with(|regs| {
self.regulators.with_untracked(|regs| {
for (_, reg) in regs.into_iter() {
console::log_5(
&JsValue::from(" "),
&JsValue::from(reg.subjects.0),
&JsValue::from(reg.subjects.1),
&JsValue::from(":"),
&reg.set_point.with_untracked(
|set_pt| JsValue::from(set_pt.spec.as_str())
console::log_1(&JsValue::from(format!(
" {:?}: {}",
reg.subjects(),
reg.set_point().with_untracked(
|set_pt| {
let spec = &set_pt.spec;
if spec.is_empty() {
"__".to_string()
} else {
spec.clone()
}
}
)
);
}
});
// update the realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
create_effect(move || {
console::log_1(&JsValue::from(
format!("Updated constraint with subjects ({}, {})", subjects.0, subjects.1)
));
if set_point.with(|set_pt| set_pt.is_present()) {
self.realize();
)));
}
});
}
@ -275,55 +431,39 @@ impl Assembly {
}
});
// set up the Gram matrix and the initial configuration matrix
let (gram, guess) = self.elements.with_untracked(|elts| {
// set up the off-diagonal part of the Gram matrix
let mut gram_to_be = PartialMatrix::new();
// set up the constraint problem
let problem = self.elements.with_untracked(|elts| {
let mut problem = ConstraintProblem::new(elts.len());
for (_, elt) in elts {
elt.pose(&mut problem, elts);
}
self.regulators.with_untracked(|regs| {
for (_, reg) in regs {
reg.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let subjects = reg.subjects;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
gram_to_be.push_sym(row, col, val);
}
});
reg.pose(&mut problem, elts);
}
});
// set up the initial configuration matrix and the diagonal of the
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index.unwrap();
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
(gram_to_be, guess_to_be)
problem
});
/* DEBUG */
// log the Gram matrix
console::log_1(&JsValue::from("Gram matrix:"));
gram.log_to_console();
problem.gram.log_to_console();
/* DEBUG */
// log the initial configuration matrix
console::log_1(&JsValue::from("Old configuration:"));
for j in 0..guess.nrows() {
for j in 0..problem.guess.nrows() {
let mut row_str = String::new();
for k in 0..guess.ncols() {
row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str());
for k in 0..problem.guess.ncols() {
row_str.push_str(format!(" {:>8.3}", problem.guess[(j, k)]).as_str());
}
console::log_1(&JsValue::from(row_str));
}
// look for a configuration with the given Gram matrix
let (config, tangent, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
@ -458,4 +598,48 @@ impl Assembly {
// sync
self.realize();
}
}
#[cfg(test)]
mod tests {
use crate::engine;
use super::*;
#[test]
#[should_panic(expected = "Element \"sphere\" should be indexed before writing problem data")]
fn unindexed_element_test() {
let _ = create_root(|| {
Element::new(
"sphere".to_string(),
"Sphere".to_string(),
[1.0_f32, 1.0_f32, 1.0_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
).pose(&mut ConstraintProblem::new(1), &Slab::new());
});
}
#[test]
#[should_panic(expected = "Subjects should be indexed before inversive distance regulator writes problem data")]
fn unindexed_subject_test_inversive_distance() {
let _ = create_root(|| {
let mut elts = Slab::new();
let subjects = [0, 1].map(|k| {
elts.insert(
Element::new(
format!("sphere{k}"),
format!("Sphere {k}"),
[1.0_f32, 1.0_f32, 1.0_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
)
});
elts[subjects[0]].column_index = Some(0);
InversiveDistanceRegulator {
subjects: subjects,
measurement: create_memo(|| 0.0),
set_point: create_signal(SpecifiedValue::try_from("0.0".to_string()).unwrap())
}.pose(&mut ConstraintProblem::new(2), &elts);
});
}
}