forked from StudioInfinity/dyna3
Manipulate the assembly (#29)
feat: Find tangent space of solution variety, use for perturbations ### Tangent space #### Implementation The structure `engine::ConfigSubspace` represents a subspace of the configuration vector space $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^5)$. It holds a basis for the subspace which is orthonormal with respect to the Euclidean inner product. The method `ConfigSubspace::symmetric_kernel` takes an endomorphism of the configuration vector space, which must be symmetric with respect to the Euclidean inner product, and returns its approximate kernel in the form of a `ConfigSubspace`. At the end of `engine::realize_gram`, we use the computed Hessian to find the tangent space of the solution variety, and we return it alongside the realization. Since altering the constraints can change the tangent space without changing the solution, we compute the tangent space even when the guess passed to the realization routine is already a solution. After `Assembly::realize` calls `engine::realize_gram`, it saves the returned tangent space in the assembly's `tangent` signal. The basis vectors are stored in configuration matrix format, ordered according to the elements' column indices. To help maintain consistency between the storage layout of the tangent space and the elements' column indices, we switch the column index data type from `usize` to `Option<usize>` and enforce the following invariants: 1. If an element has a column index, its tangent motions can be found in that column of the tangent space basis matrices. 2. If an element is affected by a constraint, it has a column index. The comments in `assembly.rs` state the invariants and describe how they're enforced. #### Automated testing The test `engine::tests::tangent_test` builds a simple assembly with a known tangent space, runs the realization routine, and checks the returned tangent space against a hand-computed basis. #### Limitations The method `ConfigSubspace::symmetric_kernel` approximates the kernel by taking all the eigenspaces whose eigenvalues are smaller than a hard-coded threshold size. We may need a more flexible system eventually. ### Deformation #### Implementation The main purpose of this implementation is to confirm that deformation works as we'd hoped. The code is messy, and the deformation routine has at least one numerical quirk. For simplicity, the keyboard commands that manipulate the assembly are handled by the display, just like the keyboard commands that control the camera. Deformation happens at the beginning of the animation loop. The function `Assembly::deform` works like this: 1. Take a list of element motions 2. Project them onto the tangent space of the solution variety 3. Sum them to get a deformation $v$ of the whole assembly 4. Step the assembly along the "mass shell" geodesic tangent to $v$ * This step stays on the solution variety to first order 5. Call `realize` to bring the assembly back onto the solution variety #### Manual testing To manipulate the assembly: 1. Select a sphere 2. Make sure the display has focus 3. Hold the following keys: * **A**/**D** for $x$ translation * **W**/**S** for $y$ translation * **shift**+**W**/**S** for $z$ translation #### Limitations Because the manipulation commands are handled by the display, you can only manipulate the assembly when the display has focus. Since our test assemblies only include spheres, we assume in `Assembly::deform` that every element is a sphere. When the tangent space is zero, `Assembly::deform` does nothing except print "The assembly is rigid" to the console. During a deformation, the curvature and co-curvature components of a sphere's vector representation can exhibit weird discontinuous "swaps" that don't visibly affect how the sphere is drawn. *[I'll write more about this in an issue.]* Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo> Reviewed-on: glen/dyna3#29 Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net> Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
parent
b490c8707f
commit
22870342f3
7 changed files with 374 additions and 34 deletions
|
@ -1,5 +1,5 @@
|
|||
use lazy_static::lazy_static;
|
||||
use nalgebra::{Const, DMatrix, DVector, Dyn};
|
||||
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
|
||||
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
|
||||
|
||||
// --- elements ---
|
||||
|
@ -85,6 +85,75 @@ impl PartialMatrix {
|
|||
}
|
||||
}
|
||||
|
||||
// --- configuration subspaces ---
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ConfigSubspace {
|
||||
assembly_dim: usize,
|
||||
basis: Vec<DMatrix<f64>>
|
||||
}
|
||||
|
||||
impl ConfigSubspace {
|
||||
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
|
||||
ConfigSubspace {
|
||||
assembly_dim: assembly_dim,
|
||||
basis: Vec::new()
|
||||
}
|
||||
}
|
||||
|
||||
// approximate the kernel of a symmetric endomorphism of the configuration
|
||||
// space for `assembly_dim` elements. we consider an eigenvector to be part
|
||||
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
|
||||
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
const THRESHOLD: f64 = 1.0e-4;
|
||||
let eig = SymmetricEigen::new(a);
|
||||
let eig_vecs = eig.eigenvectors.column_iter();
|
||||
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
|
||||
let basis = eig_pairs.filter_map(
|
||||
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
|
||||
Into::<DMatrix<f64>>::into(
|
||||
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
/* DEBUG */
|
||||
// print the eigenvalues
|
||||
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
|
||||
console::log_1(&JsValue::from(
|
||||
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
|
||||
));
|
||||
|
||||
ConfigSubspace {
|
||||
assembly_dim: assembly_dim,
|
||||
basis: basis.collect()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
self.basis.len()
|
||||
}
|
||||
|
||||
pub fn assembly_dim(&self) -> usize {
|
||||
self.assembly_dim
|
||||
}
|
||||
|
||||
// find the projection onto this subspace, with respect to the Euclidean
|
||||
// inner product, of the motion where the element with the given column
|
||||
// index has velocity `v`
|
||||
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
|
||||
if self.dim() == 0 {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
|
||||
} else {
|
||||
self.basis.iter().map(
|
||||
|b| b.column(column_index).dot(&v) * b
|
||||
).sum()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- descent history ---
|
||||
|
||||
pub struct DescentHistory {
|
||||
|
@ -181,7 +250,7 @@ pub fn realize_gram(
|
|||
reg_scale: f64,
|
||||
max_descent_steps: i32,
|
||||
max_backoff_steps: i32
|
||||
) -> (DMatrix<f64>, bool, DescentHistory) {
|
||||
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
// start the descent history
|
||||
let mut history = DescentHistory::new();
|
||||
|
||||
|
@ -201,12 +270,8 @@ pub fn realize_gram(
|
|||
|
||||
// use Newton's method with backtracking and gradient descent backup
|
||||
let mut state = SearchState::from_config(gram, guess);
|
||||
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
|
||||
for _ in 0..max_descent_steps {
|
||||
// stop if the loss is tolerably low
|
||||
history.config.push(state.config.clone());
|
||||
history.scaled_loss.push(state.loss / scale_adjustment);
|
||||
if state.loss < tol { break; }
|
||||
|
||||
// find the negative gradient of the loss function
|
||||
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
|
||||
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
|
||||
|
@ -229,7 +294,7 @@ pub fn realize_gram(
|
|||
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
|
||||
}
|
||||
}
|
||||
let mut hess = DMatrix::from_columns(hess_cols.as_slice());
|
||||
hess = DMatrix::from_columns(hess_cols.as_slice());
|
||||
|
||||
// regularize the Hessian
|
||||
let min_eigval = hess.symmetric_eigenvalues().min();
|
||||
|
@ -249,6 +314,11 @@ pub fn realize_gram(
|
|||
hess[(k, k)] = 1.0;
|
||||
}
|
||||
|
||||
// stop if the loss is tolerably low
|
||||
history.config.push(state.config.clone());
|
||||
history.scaled_loss.push(state.loss / scale_adjustment);
|
||||
if state.loss < tol { break; }
|
||||
|
||||
// compute the Newton step
|
||||
/*
|
||||
we need to either handle or eliminate the case where the minimum
|
||||
|
@ -256,7 +326,7 @@ pub fn realize_gram(
|
|||
singular. right now, this causes the Cholesky decomposition to return
|
||||
`None`, leading to a panic when we unrap
|
||||
*/
|
||||
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
|
||||
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
|
||||
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
||||
history.base_step.push(base_step.clone());
|
||||
|
||||
|
@ -269,10 +339,16 @@ pub fn realize_gram(
|
|||
state = better_state;
|
||||
history.backoff_steps.push(backoff_steps);
|
||||
},
|
||||
None => return (state.config, false, history)
|
||||
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
|
||||
};
|
||||
}
|
||||
(state.config, state.loss < tol, history)
|
||||
let success = state.loss < tol;
|
||||
let tangent = if success {
|
||||
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
|
||||
} else {
|
||||
ConfigSubspace::zero(assembly_dim)
|
||||
};
|
||||
(state.config, tangent, success, history)
|
||||
}
|
||||
|
||||
// --- tests ---
|
||||
|
@ -291,7 +367,7 @@ pub mod irisawa {
|
|||
|
||||
use super::*;
|
||||
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, bool, DescentHistory) {
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for s in 0..9 {
|
||||
|
@ -399,7 +475,7 @@ mod tests {
|
|||
fn irisawa_hexlet_test() {
|
||||
// solve Irisawa's problem
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, _, _) = realize_irisawa_hexlet(SCALED_TOL);
|
||||
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
|
||||
|
||||
// check against Irisawa's solution
|
||||
let entry_tol = SCALED_TOL.sqrt();
|
||||
|
@ -409,6 +485,61 @@ mod tests {
|
|||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tangent_test() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
const ASSEMBLY_DIM: usize = 3;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..3 {
|
||||
for k in j..3 {
|
||||
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
sphere(0.0, 0.0, 0.0, -2.0),
|
||||
sphere(0.0, 0.0, 1.0, 1.0),
|
||||
sphere(0.0, 0.0, -1.0, 1.0)
|
||||
]);
|
||||
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(config, guess);
|
||||
assert_eq!(success, true);
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
// confirm that the tangent space has dimension five or less
|
||||
let ConfigSubspace(ref tangent_basis) = tangent;
|
||||
assert_eq!(tangent_basis.len(), 5);
|
||||
|
||||
// confirm that the tangent space contains all the motions we expect it
|
||||
// to. since we've already bounded the dimension of the tangent space,
|
||||
// this confirms that the tangent space is what we expect it to be
|
||||
let tangent_motions = vec![
|
||||
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
|
||||
0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, -1.0, -0.25, -1.0,
|
||||
0.0, 0.0, -1.0, 0.25, 1.0
|
||||
])
|
||||
];
|
||||
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
|
||||
for motion in tangent_motions {
|
||||
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v, k)
|
||||
).sum();
|
||||
assert!((motion - motion_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
||||
|
||||
// at the frozen indices, the optimization steps should have exact zeros,
|
||||
// and the realized configuration should match the initial guess
|
||||
#[test]
|
||||
|
@ -428,7 +559,7 @@ mod tests {
|
|||
]);
|
||||
let frozen = [(3, 0), (3, 1)];
|
||||
println!();
|
||||
let (config, success, history) = realize_gram(
|
||||
let (config, _, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue