forked from StudioInfinity/dyna3
Add more test assemblies (#103)
This PR helps probe the capabilities of the engine. Also adjusts the realization triggering system to reduce redundant realizations as we set an assembly's regulators during loading. Specificially, consolidates all calls to `realize()` into a single effect, which is triggered by the `needs_realization` signal. Also introduces a `keep_realized` signal and use it to pause realization while loading assemblies, but this signal is planned for removal as ultimately we do not want a separate "mode" of interpreting commands during loading, for maximal reproducibility of results (and simplicity of system). Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo> Reviewed-on: StudioInfinity/dyna3#103 Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net> Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
parent
5864017e6f
commit
0801200210
13 changed files with 1045 additions and 277 deletions
54
app-proto/src/components/add_remove.rs
Normal file
54
app-proto/src/components/add_remove.rs
Normal file
|
@ -0,0 +1,54 @@
|
|||
use std::rc::Rc;
|
||||
use sycamore::prelude::*;
|
||||
|
||||
use super::test_assembly_chooser::TestAssemblyChooser;
|
||||
use crate::{
|
||||
AppState,
|
||||
assembly::{InversiveDistanceRegulator, Point, Sphere}
|
||||
};
|
||||
|
||||
#[component]
|
||||
pub fn AddRemove() -> View {
|
||||
view! {
|
||||
div(id="add-remove") {
|
||||
button(
|
||||
on:click=|_| {
|
||||
let state = use_context::<AppState>();
|
||||
state.assembly.insert_element_default::<Sphere>();
|
||||
}
|
||||
) { "Add sphere" }
|
||||
button(
|
||||
on:click=|_| {
|
||||
let state = use_context::<AppState>();
|
||||
state.assembly.insert_element_default::<Point>();
|
||||
}
|
||||
) { "Add point" }
|
||||
button(
|
||||
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
|
||||
disabled={
|
||||
let state = use_context::<AppState>();
|
||||
state.selection.with(|sel| sel.len() != 2)
|
||||
},
|
||||
on:click=|_| {
|
||||
let state = use_context::<AppState>();
|
||||
let subjects: [_; 2] = state.selection.with(
|
||||
// the button is only enabled when two elements are
|
||||
// selected, so we know the cast to a two-element array
|
||||
// will succeed
|
||||
|sel| sel
|
||||
.clone()
|
||||
.into_iter()
|
||||
.collect::<Vec<_>>()
|
||||
.try_into()
|
||||
.unwrap()
|
||||
);
|
||||
state.assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new(subjects))
|
||||
);
|
||||
state.selection.update(|sel| sel.clear());
|
||||
}
|
||||
) { "🔗" }
|
||||
TestAssemblyChooser {}
|
||||
}
|
||||
}
|
||||
}
|
258
app-proto/src/components/diagnostics.rs
Normal file
258
app-proto/src/components/diagnostics.rs
Normal file
|
@ -0,0 +1,258 @@
|
|||
use charming::{
|
||||
Chart,
|
||||
WasmRenderer,
|
||||
component::{Axis, DataZoom, Grid},
|
||||
element::{AxisType, Symbol},
|
||||
series::{Line, Scatter},
|
||||
};
|
||||
use sycamore::prelude::*;
|
||||
|
||||
use crate::AppState;
|
||||
|
||||
#[derive(Clone)]
|
||||
struct DiagnosticsState {
|
||||
active_tab: Signal<String>
|
||||
}
|
||||
|
||||
impl DiagnosticsState {
|
||||
fn new(initial_tab: String) -> DiagnosticsState {
|
||||
DiagnosticsState {
|
||||
active_tab: create_signal(initial_tab)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a realization status indicator
|
||||
#[component]
|
||||
fn RealizationStatus() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
let realization_status = state.assembly.realization_status;
|
||||
view! {
|
||||
div(
|
||||
id="realization-status",
|
||||
class=realization_status.with(
|
||||
|status| match status {
|
||||
Ok(_) => "",
|
||||
Err(_) => "invalid"
|
||||
}
|
||||
)
|
||||
) {
|
||||
div(class="status")
|
||||
div {
|
||||
(realization_status.with(
|
||||
|status| match status {
|
||||
Ok(_) => "Target accuracy achieved".to_string(),
|
||||
Err(message) => message.clone()
|
||||
}
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn into_log10_time_point((step, value): (usize, f64)) -> Vec<Option<f64>> {
|
||||
vec![
|
||||
Some(step as f64),
|
||||
if value == 0.0 { None } else { Some(value.abs().log10()) }
|
||||
]
|
||||
}
|
||||
|
||||
// the loss history from the last realization
|
||||
#[component]
|
||||
fn LossHistory() -> View {
|
||||
const CONTAINER_ID: &str = "loss-history";
|
||||
let state = use_context::<AppState>();
|
||||
let renderer = WasmRenderer::new_opt(None, Some(178));
|
||||
|
||||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the loss history
|
||||
let scaled_loss: Vec<_> = state.assembly.descent_history.with(
|
||||
|history| history.scaled_loss
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(step, &loss)| (step, loss))
|
||||
.map(into_log10_time_point)
|
||||
.collect()
|
||||
);
|
||||
|
||||
// initialize the chart axes
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let scaled_loss_axis = Axis::new();
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
// chart: it instead leads to previous data being re-used
|
||||
let scaled_loss_series = Line::new().data(
|
||||
if scaled_loss.len() > 0 {
|
||||
scaled_loss
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let chart = Chart::new()
|
||||
.animation(false)
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
|
||||
.x_axis(step_axis)
|
||||
.y_axis(scaled_loss_axis)
|
||||
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
|
||||
.series(scaled_loss_series);
|
||||
renderer.render(CONTAINER_ID, &chart).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
view! {
|
||||
div(id=CONTAINER_ID, class="diagnostics-chart")
|
||||
}
|
||||
}
|
||||
|
||||
// the spectrum of the Hessian during the last realization
|
||||
#[component]
|
||||
fn SpectrumHistory() -> View {
|
||||
const CONTAINER_ID: &str = "spectrum-history";
|
||||
let state = use_context::<AppState>();
|
||||
let renderer = WasmRenderer::new(478, 178);
|
||||
|
||||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the spectrum of the Hessian at each step, split into its
|
||||
// positive, negative, and strictly-zero parts
|
||||
let (
|
||||
hess_eigvals_zero,
|
||||
hess_eigvals_nonzero
|
||||
): (Vec<_>, Vec<_>) = state.assembly.descent_history.with(
|
||||
|history| history.hess_eigvals
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(
|
||||
|(step, eigvals)| eigvals.iter().map(
|
||||
move |&val| (step, val)
|
||||
)
|
||||
)
|
||||
.flatten()
|
||||
.partition(|&(_, val)| val == 0.0)
|
||||
);
|
||||
let zero_level = hess_eigvals_nonzero
|
||||
.iter()
|
||||
.map(|(_, val)| val.abs())
|
||||
.reduce(f64::min)
|
||||
.map(|val| 0.1 * val)
|
||||
.unwrap_or(1.0);
|
||||
let (
|
||||
hess_eigvals_pos,
|
||||
hess_eigvals_neg
|
||||
): (Vec<_>, Vec<_>) = hess_eigvals_nonzero
|
||||
.into_iter()
|
||||
.partition(|&(_, val)| val > 0.0);
|
||||
|
||||
// initialize the chart axes
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let eigval_axis = Axis::new();
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
// chart: it instead leads to previous data being re-used
|
||||
let eigval_series_pos = Scatter::new()
|
||||
.symbol_size(4.5)
|
||||
.data(
|
||||
if hess_eigvals_pos.len() > 0 {
|
||||
hess_eigvals_pos
|
||||
.into_iter()
|
||||
.map(into_log10_time_point)
|
||||
.collect()
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let eigval_series_neg = Scatter::new()
|
||||
.symbol(Symbol::Diamond)
|
||||
.symbol_size(6.0)
|
||||
.data(
|
||||
if hess_eigvals_neg.len() > 0 {
|
||||
hess_eigvals_neg
|
||||
.into_iter()
|
||||
.map(into_log10_time_point)
|
||||
.collect()
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let eigval_series_zero = Scatter::new()
|
||||
.symbol(Symbol::Triangle)
|
||||
.symbol_size(5.0)
|
||||
.data(
|
||||
if hess_eigvals_zero.len() > 0 {
|
||||
hess_eigvals_zero
|
||||
.into_iter()
|
||||
.map(|(step, _)| (step, zero_level))
|
||||
.map(into_log10_time_point)
|
||||
.collect()
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let chart = Chart::new()
|
||||
.animation(false)
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
|
||||
.x_axis(step_axis)
|
||||
.y_axis(eigval_axis)
|
||||
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
|
||||
.series(eigval_series_pos)
|
||||
.series(eigval_series_neg)
|
||||
.series(eigval_series_zero);
|
||||
renderer.render(CONTAINER_ID, &chart).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
view! {
|
||||
div(id=CONTAINER_ID, class="diagnostics-chart")
|
||||
}
|
||||
}
|
||||
|
||||
#[component(inline_props)]
|
||||
fn DiagnosticsPanel(name: &'static str, children: Children) -> View {
|
||||
let diagnostics_state = use_context::<DiagnosticsState>();
|
||||
view! {
|
||||
div(
|
||||
class="diagnostics-panel",
|
||||
"hidden"=diagnostics_state.active_tab.with(
|
||||
|active_tab| {
|
||||
if active_tab == name {
|
||||
None
|
||||
} else {
|
||||
Some("")
|
||||
}
|
||||
}
|
||||
)
|
||||
) {
|
||||
(children)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Diagnostics() -> View {
|
||||
let diagnostics_state = DiagnosticsState::new("loss".to_string());
|
||||
let active_tab = diagnostics_state.active_tab.clone();
|
||||
provide_context(diagnostics_state);
|
||||
|
||||
view! {
|
||||
div(id="diagnostics") {
|
||||
div(id="diagnostics-bar") {
|
||||
RealizationStatus {}
|
||||
select(bind:value=active_tab) {
|
||||
option(value="loss") { "Loss" }
|
||||
option(value="spectrum") { "Spectrum" }
|
||||
}
|
||||
}
|
||||
DiagnosticsPanel(name="loss") { LossHistory {} }
|
||||
DiagnosticsPanel(name="spectrum") { SpectrumHistory {} }
|
||||
}
|
||||
}
|
||||
}
|
900
app-proto/src/components/display.rs
Normal file
900
app-proto/src/components/display.rs
Normal file
|
@ -0,0 +1,900 @@
|
|||
use core::array;
|
||||
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
|
||||
use std::rc::Rc;
|
||||
use sycamore::{prelude::*, motion::create_raf};
|
||||
use web_sys::{
|
||||
console,
|
||||
window,
|
||||
KeyboardEvent,
|
||||
MouseEvent,
|
||||
WebGl2RenderingContext,
|
||||
WebGlBuffer,
|
||||
WebGlProgram,
|
||||
WebGlShader,
|
||||
WebGlUniformLocation,
|
||||
wasm_bindgen::{JsCast, JsValue}
|
||||
};
|
||||
|
||||
use crate::{
|
||||
AppState,
|
||||
assembly::{Element, ElementColor, ElementMotion, Point, Sphere}
|
||||
};
|
||||
|
||||
// --- color ---
|
||||
|
||||
const COLOR_SIZE: usize = 3;
|
||||
type ColorWithOpacity = [f32; COLOR_SIZE + 1];
|
||||
|
||||
fn combine_channels(color: ElementColor, opacity: f32) -> ColorWithOpacity {
|
||||
let mut color_with_opacity = [0.0; COLOR_SIZE + 1];
|
||||
color_with_opacity[..COLOR_SIZE].copy_from_slice(&color);
|
||||
color_with_opacity[COLOR_SIZE] = opacity;
|
||||
color_with_opacity
|
||||
}
|
||||
|
||||
// --- scene data ---
|
||||
|
||||
struct SceneSpheres {
|
||||
representations: Vec<DVector<f64>>,
|
||||
colors_with_opacity: Vec<ColorWithOpacity>,
|
||||
highlights: Vec<f32>
|
||||
}
|
||||
|
||||
impl SceneSpheres {
|
||||
fn new() -> SceneSpheres{
|
||||
SceneSpheres {
|
||||
representations: Vec::new(),
|
||||
colors_with_opacity: Vec::new(),
|
||||
highlights: Vec::new()
|
||||
}
|
||||
}
|
||||
|
||||
fn len_i32(&self) -> i32 {
|
||||
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
|
||||
}
|
||||
|
||||
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32) {
|
||||
self.representations.push(representation);
|
||||
self.colors_with_opacity.push(combine_channels(color, opacity));
|
||||
self.highlights.push(highlight);
|
||||
}
|
||||
}
|
||||
|
||||
struct ScenePoints {
|
||||
representations: Vec<DVector<f64>>,
|
||||
colors_with_opacity: Vec<ColorWithOpacity>,
|
||||
highlights: Vec<f32>,
|
||||
selections: Vec<f32>
|
||||
}
|
||||
|
||||
impl ScenePoints {
|
||||
fn new() -> ScenePoints {
|
||||
ScenePoints {
|
||||
representations: Vec::new(),
|
||||
colors_with_opacity: Vec::new(),
|
||||
highlights: Vec::new(),
|
||||
selections: Vec::new()
|
||||
}
|
||||
}
|
||||
|
||||
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32, selected: bool) {
|
||||
self.representations.push(representation);
|
||||
self.colors_with_opacity.push(combine_channels(color, opacity));
|
||||
self.highlights.push(highlight);
|
||||
self.selections.push(if selected { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Scene {
|
||||
spheres: SceneSpheres,
|
||||
points: ScenePoints
|
||||
}
|
||||
|
||||
impl Scene {
|
||||
fn new() -> Scene {
|
||||
Scene {
|
||||
spheres: SceneSpheres::new(),
|
||||
points: ScenePoints::new()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait DisplayItem {
|
||||
fn show(&self, scene: &mut Scene, selected: bool);
|
||||
|
||||
// the smallest positive depth, represented as a multiple of `dir`, where
|
||||
// the line generated by `dir` hits the element. returns `None` if the line
|
||||
// misses the element
|
||||
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64>;
|
||||
}
|
||||
|
||||
impl DisplayItem for Sphere {
|
||||
fn show(&self, scene: &mut Scene, selected: bool) {
|
||||
/* SCAFFOLDING */
|
||||
const DEFAULT_OPACITY: f32 = 0.5;
|
||||
const GHOST_OPACITY: f32 = 0.2;
|
||||
const HIGHLIGHT: f32 = 0.2;
|
||||
|
||||
let representation = self.representation.get_clone_untracked();
|
||||
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
||||
let opacity = if self.ghost.get() { GHOST_OPACITY } else { DEFAULT_OPACITY };
|
||||
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
||||
scene.spheres.push(representation, color, opacity, highlight);
|
||||
}
|
||||
|
||||
// this method should be kept synchronized with `sphere_cast` in
|
||||
// `spheres.frag`, which does essentially the same thing on the GPU side
|
||||
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, _pixel_size: f64) -> Option<f64> {
|
||||
// if `a/b` is less than this threshold, we approximate
|
||||
// `a*u^2 + b*u + c` by the linear function `b*u + c`
|
||||
const DEG_THRESHOLD: f64 = 1e-9;
|
||||
|
||||
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
||||
let a = -rep[3] * dir.norm_squared();
|
||||
let b = rep.rows_range(..3).dot(&dir);
|
||||
let c = -rep[4];
|
||||
|
||||
let adjust = 4.0*a*c/(b*b);
|
||||
if adjust < 1.0 {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
//
|
||||
// a*u^2 + b*u + c
|
||||
//
|
||||
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
|
||||
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
|
||||
// both roots have the same sign, `lin_root` will be the one closer
|
||||
// to `u = 0`
|
||||
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
|
||||
let lin_root = -(2.0*c)/b / square_rect_ratio;
|
||||
if a.abs() > DEG_THRESHOLD * b.abs() {
|
||||
if lin_root > 0.0 {
|
||||
Some(lin_root)
|
||||
} else {
|
||||
let other_root = -b/(2.*a) * square_rect_ratio;
|
||||
(other_root > 0.0).then_some(other_root)
|
||||
}
|
||||
} else {
|
||||
(lin_root > 0.0).then_some(lin_root)
|
||||
}
|
||||
} else {
|
||||
// the line through `dir` misses the sphere completely
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DisplayItem for Point {
|
||||
fn show(&self, scene: &mut Scene, selected: bool) {
|
||||
/* SCAFFOLDING */
|
||||
const GHOST_OPACITY: f32 = 0.4;
|
||||
const HIGHLIGHT: f32 = 0.5;
|
||||
|
||||
let representation = self.representation.get_clone_untracked();
|
||||
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
||||
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
|
||||
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
||||
scene.points.push(representation, color, opacity, highlight, selected);
|
||||
}
|
||||
|
||||
/* SCAFFOLDING */
|
||||
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64> {
|
||||
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
||||
if rep[2] < 0.0 {
|
||||
// this constant should be kept synchronized with `point.frag`
|
||||
const POINT_RADIUS_PX: f64 = 4.0;
|
||||
|
||||
// find the radius of the point in screen projection units
|
||||
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
|
||||
|
||||
// find the squared distance between the screen projections of the
|
||||
// ray and the point
|
||||
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
|
||||
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
|
||||
let dist_sq = (dir_proj - rep_proj).norm_squared();
|
||||
|
||||
// if the ray hits the point, return its depth
|
||||
if dist_sq < point_radius_proj * point_radius_proj {
|
||||
Some(rep[2] / dir[2])
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- WebGL utilities ---
|
||||
|
||||
fn compile_shader(
|
||||
context: &WebGl2RenderingContext,
|
||||
shader_type: u32,
|
||||
source: &str,
|
||||
) -> WebGlShader {
|
||||
let shader = context.create_shader(shader_type).unwrap();
|
||||
context.shader_source(&shader, source);
|
||||
context.compile_shader(&shader);
|
||||
shader
|
||||
}
|
||||
|
||||
fn set_up_program(
|
||||
context: &WebGl2RenderingContext,
|
||||
vertex_shader_source: &str,
|
||||
fragment_shader_source: &str
|
||||
) -> WebGlProgram {
|
||||
// compile the shaders
|
||||
let vertex_shader = compile_shader(
|
||||
&context,
|
||||
WebGl2RenderingContext::VERTEX_SHADER,
|
||||
vertex_shader_source,
|
||||
);
|
||||
let fragment_shader = compile_shader(
|
||||
&context,
|
||||
WebGl2RenderingContext::FRAGMENT_SHADER,
|
||||
fragment_shader_source,
|
||||
);
|
||||
|
||||
// create the program and attach the shaders
|
||||
let program = context.create_program().unwrap();
|
||||
context.attach_shader(&program, &vertex_shader);
|
||||
context.attach_shader(&program, &fragment_shader);
|
||||
context.link_program(&program);
|
||||
|
||||
/* DEBUG */
|
||||
// report whether linking succeeded
|
||||
let link_status = context
|
||||
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
|
||||
.as_bool()
|
||||
.unwrap();
|
||||
let link_msg = if link_status {
|
||||
"Linked successfully"
|
||||
} else {
|
||||
"Linking failed"
|
||||
};
|
||||
console::log_1(&JsValue::from(link_msg));
|
||||
|
||||
program
|
||||
}
|
||||
|
||||
fn get_uniform_array_locations<const N: usize>(
|
||||
context: &WebGl2RenderingContext,
|
||||
program: &WebGlProgram,
|
||||
var_name: &str,
|
||||
member_name_opt: Option<&str>
|
||||
) -> [Option<WebGlUniformLocation>; N] {
|
||||
array::from_fn(|n| {
|
||||
let name = match member_name_opt {
|
||||
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
|
||||
None => format!("{var_name}[{n}]")
|
||||
};
|
||||
context.get_uniform_location(&program, name.as_str())
|
||||
})
|
||||
}
|
||||
|
||||
// bind the given vertex buffer object to the given vertex attribute
|
||||
fn bind_to_attribute(
|
||||
context: &WebGl2RenderingContext,
|
||||
attr_index: u32,
|
||||
attr_size: i32,
|
||||
buffer: &Option<WebGlBuffer>
|
||||
) {
|
||||
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
|
||||
context.vertex_attrib_pointer_with_i32(
|
||||
attr_index,
|
||||
attr_size,
|
||||
WebGl2RenderingContext::FLOAT,
|
||||
false, // don't normalize
|
||||
0, // zero stride
|
||||
0, // zero offset
|
||||
);
|
||||
}
|
||||
|
||||
// load the given data into a new vertex buffer object
|
||||
fn load_new_buffer(
|
||||
context: &WebGl2RenderingContext,
|
||||
data: &[f32]
|
||||
) -> Option<WebGlBuffer> {
|
||||
// create a buffer and bind it to ARRAY_BUFFER
|
||||
let buffer = context.create_buffer();
|
||||
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
|
||||
|
||||
// load the given data into the buffer. this block is unsafe because
|
||||
// `Float32Array::view` creates a raw view into our module's
|
||||
// `WebAssembly.Memory` buffer. allocating more memory will change the
|
||||
// buffer, invalidating the view, so we have to make sure we don't allocate
|
||||
// any memory until the view is dropped. we're okay here because the view is
|
||||
// used as soon as it's created
|
||||
unsafe {
|
||||
context.buffer_data_with_array_buffer_view(
|
||||
WebGl2RenderingContext::ARRAY_BUFFER,
|
||||
&js_sys::Float32Array::view(&data),
|
||||
WebGl2RenderingContext::STATIC_DRAW,
|
||||
);
|
||||
}
|
||||
|
||||
buffer
|
||||
}
|
||||
|
||||
fn bind_new_buffer_to_attribute(
|
||||
context: &WebGl2RenderingContext,
|
||||
attr_index: u32,
|
||||
attr_size: i32,
|
||||
data: &[f32]
|
||||
) {
|
||||
let buffer = load_new_buffer(context, data);
|
||||
bind_to_attribute(context, attr_index, attr_size, &buffer);
|
||||
}
|
||||
|
||||
// the direction in camera space that a mouse event is pointing along
|
||||
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
|
||||
let target: web_sys::Element = event.target().unwrap().unchecked_into();
|
||||
let rect = target.get_bounding_client_rect();
|
||||
let width = rect.width();
|
||||
let height = rect.height();
|
||||
let shortdim = width.min(height);
|
||||
|
||||
// this constant should be kept synchronized with `spheres.frag` and
|
||||
// `point.vert`
|
||||
const FOCAL_SLOPE: f64 = 0.3;
|
||||
|
||||
(
|
||||
Vector3::new(
|
||||
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
|
||||
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
|
||||
-1.0
|
||||
),
|
||||
FOCAL_SLOPE * 2.0 / shortdim
|
||||
)
|
||||
}
|
||||
|
||||
// --- display component ---
|
||||
|
||||
#[component]
|
||||
pub fn Display() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
// canvas
|
||||
let display = create_node_ref();
|
||||
|
||||
// viewpoint
|
||||
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
|
||||
|
||||
// navigation
|
||||
let pitch_up = create_signal(0.0);
|
||||
let pitch_down = create_signal(0.0);
|
||||
let yaw_right = create_signal(0.0);
|
||||
let yaw_left = create_signal(0.0);
|
||||
let roll_ccw = create_signal(0.0);
|
||||
let roll_cw = create_signal(0.0);
|
||||
let zoom_in = create_signal(0.0);
|
||||
let zoom_out = create_signal(0.0);
|
||||
let turntable = create_signal(false); /* BENCHMARKING */
|
||||
|
||||
// manipulation
|
||||
let translate_neg_x = create_signal(0.0);
|
||||
let translate_pos_x = create_signal(0.0);
|
||||
let translate_neg_y = create_signal(0.0);
|
||||
let translate_pos_y = create_signal(0.0);
|
||||
let translate_neg_z = create_signal(0.0);
|
||||
let translate_pos_z = create_signal(0.0);
|
||||
let shrink_neg = create_signal(0.0);
|
||||
let shrink_pos = create_signal(0.0);
|
||||
|
||||
// change listener
|
||||
let scene_changed = create_signal(true);
|
||||
create_effect(move || {
|
||||
state.assembly.elements.with(|elts| {
|
||||
for elt in elts {
|
||||
elt.representation().track();
|
||||
elt.ghost().track();
|
||||
}
|
||||
});
|
||||
state.selection.track();
|
||||
scene_changed.set(true);
|
||||
});
|
||||
|
||||
/* INSTRUMENTS */
|
||||
const SAMPLE_PERIOD: i32 = 60;
|
||||
let mut last_sample_time = 0.0;
|
||||
let mut frames_since_last_sample = 0;
|
||||
let mean_frame_interval = create_signal(0.0);
|
||||
|
||||
let assembly_for_raf = state.assembly.clone();
|
||||
on_mount(move || {
|
||||
// timing
|
||||
let mut last_time = 0.0;
|
||||
|
||||
// viewpoint
|
||||
const ROT_SPEED: f64 = 0.4; // in radians per second
|
||||
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
|
||||
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
|
||||
let mut orientation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut rotation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut location_z: f64 = 5.0;
|
||||
|
||||
// manipulation
|
||||
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
|
||||
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
|
||||
|
||||
// display parameters
|
||||
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
|
||||
const DEBUG_MODE: i32 = 0; /* DEBUG */
|
||||
|
||||
/* INSTRUMENTS */
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
|
||||
// get the display canvas
|
||||
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("webgl2")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<WebGl2RenderingContext>()
|
||||
.unwrap();
|
||||
|
||||
// disable depth testing
|
||||
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
|
||||
|
||||
// set blend mode
|
||||
ctx.enable(WebGl2RenderingContext::BLEND);
|
||||
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
|
||||
|
||||
// set up the sphere rendering program
|
||||
let sphere_program = set_up_program(
|
||||
&ctx,
|
||||
include_str!("identity.vert"),
|
||||
include_str!("spheres.frag")
|
||||
);
|
||||
|
||||
// set up the point rendering program
|
||||
let point_program = set_up_program(
|
||||
&ctx,
|
||||
include_str!("point.vert"),
|
||||
include_str!("point.frag")
|
||||
);
|
||||
|
||||
/* DEBUG */
|
||||
// print the maximum number of vectors that can be passed as
|
||||
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
|
||||
// requires this maximum to be at least 224, as discussed in the
|
||||
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
|
||||
// here:
|
||||
//
|
||||
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
|
||||
//
|
||||
// there are also other size limits. for example, on Aaron's
|
||||
// machine, the the length of a float or genType array seems to be
|
||||
// capped at 1024 elements
|
||||
console::log_2(
|
||||
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
||||
&JsValue::from("uniform vectors available")
|
||||
);
|
||||
|
||||
// find the sphere program's vertex attribute
|
||||
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
|
||||
|
||||
// find the sphere program's uniforms
|
||||
const SPHERE_MAX: usize = 200;
|
||||
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
|
||||
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "sphere_list", Some("sp")
|
||||
);
|
||||
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "sphere_list", Some("lt")
|
||||
);
|
||||
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "color_list", None
|
||||
);
|
||||
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "highlight_list", None
|
||||
);
|
||||
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
|
||||
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
|
||||
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
|
||||
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
|
||||
|
||||
// load the viewport vertex positions into a new vertex buffer object
|
||||
const VERTEX_CNT: usize = 6;
|
||||
let viewport_positions: [f32; 3*VERTEX_CNT] = [
|
||||
// northwest triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
-1.0, 1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
// southeast triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
1.0, -1.0, 0.0
|
||||
];
|
||||
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
|
||||
|
||||
// find the point program's vertex attributes
|
||||
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
|
||||
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
|
||||
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
|
||||
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
|
||||
|
||||
// set up a repainting routine
|
||||
let (_, start_animation_loop, _) = create_raf(move || {
|
||||
// get the time step
|
||||
let time = performance.now();
|
||||
let time_step = 0.001*(time - last_time);
|
||||
last_time = time;
|
||||
|
||||
// get the navigation state
|
||||
let pitch_up_val = pitch_up.get();
|
||||
let pitch_down_val = pitch_down.get();
|
||||
let yaw_right_val = yaw_right.get();
|
||||
let yaw_left_val = yaw_left.get();
|
||||
let roll_ccw_val = roll_ccw.get();
|
||||
let roll_cw_val = roll_cw.get();
|
||||
let zoom_in_val = zoom_in.get();
|
||||
let zoom_out_val = zoom_out.get();
|
||||
let turntable_val = turntable.get(); /* BENCHMARKING */
|
||||
|
||||
// get the manipulation state
|
||||
let translate_neg_x_val = translate_neg_x.get();
|
||||
let translate_pos_x_val = translate_pos_x.get();
|
||||
let translate_neg_y_val = translate_neg_y.get();
|
||||
let translate_pos_y_val = translate_pos_y.get();
|
||||
let translate_neg_z_val = translate_neg_z.get();
|
||||
let translate_pos_z_val = translate_pos_z.get();
|
||||
let shrink_neg_val = shrink_neg.get();
|
||||
let shrink_pos_val = shrink_pos.get();
|
||||
|
||||
// update the assembly's orientation
|
||||
let ang_vel = {
|
||||
let pitch = pitch_up_val - pitch_down_val;
|
||||
let yaw = yaw_right_val - yaw_left_val;
|
||||
let roll = roll_ccw_val - roll_cw_val;
|
||||
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
|
||||
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
}
|
||||
} /* BENCHMARKING */ + if turntable_val {
|
||||
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
};
|
||||
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
|
||||
rotation_sp.copy_from(
|
||||
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
|
||||
);
|
||||
orientation = &rotation * &orientation;
|
||||
|
||||
// update the assembly's location
|
||||
let zoom = zoom_out_val - zoom_in_val;
|
||||
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
|
||||
|
||||
// manipulate the assembly
|
||||
if state.selection.with(|sel| sel.len() == 1) {
|
||||
let sel = state.selection.with(
|
||||
|sel| sel.into_iter().next().unwrap().clone()
|
||||
);
|
||||
let translate_x = translate_pos_x_val - translate_neg_x_val;
|
||||
let translate_y = translate_pos_y_val - translate_neg_y_val;
|
||||
let translate_z = translate_pos_z_val - translate_neg_z_val;
|
||||
let shrink = shrink_pos_val - shrink_neg_val;
|
||||
let translating =
|
||||
translate_x != 0.0
|
||||
|| translate_y != 0.0
|
||||
|| translate_z != 0.0;
|
||||
if translating || shrink != 0.0 {
|
||||
let elt_motion = {
|
||||
let u = if translating {
|
||||
TRANSLATION_SPEED * Vector3::new(
|
||||
translate_x, translate_y, translate_z
|
||||
).normalize()
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
};
|
||||
time_step * DVector::from_column_slice(
|
||||
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
|
||||
)
|
||||
};
|
||||
assembly_for_raf.deform(
|
||||
vec![
|
||||
ElementMotion {
|
||||
element: sel,
|
||||
velocity: elt_motion.as_view()
|
||||
}
|
||||
]
|
||||
);
|
||||
scene_changed.set(true);
|
||||
}
|
||||
}
|
||||
|
||||
if scene_changed.get() {
|
||||
const SPACE_DIM: usize = 3;
|
||||
const COLOR_SIZE: usize = 3;
|
||||
|
||||
/* INSTRUMENTS */
|
||||
// measure mean frame interval
|
||||
frames_since_last_sample += 1;
|
||||
if frames_since_last_sample >= SAMPLE_PERIOD {
|
||||
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
||||
last_sample_time = time;
|
||||
frames_since_last_sample = 0;
|
||||
}
|
||||
|
||||
// --- get the assembly ---
|
||||
|
||||
let mut scene = Scene::new();
|
||||
|
||||
// find the map from assembly space to world space
|
||||
let location = {
|
||||
let u = -location_z;
|
||||
DMatrix::from_column_slice(5, 5, &[
|
||||
1.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, u,
|
||||
0.0, 0.0, 2.0*u, 1.0, u*u,
|
||||
0.0, 0.0, 0.0, 0.0, 1.0
|
||||
])
|
||||
};
|
||||
let asm_to_world = &location * &orientation;
|
||||
|
||||
// set up the scene
|
||||
state.assembly.elements.with_untracked(
|
||||
|elts| for elt in elts {
|
||||
let selected = state.selection.with(|sel| sel.contains(elt));
|
||||
elt.show(&mut scene, selected);
|
||||
}
|
||||
);
|
||||
let sphere_cnt = scene.spheres.len_i32();
|
||||
|
||||
// --- draw the spheres ---
|
||||
|
||||
// use the sphere rendering program
|
||||
ctx.use_program(Some(&sphere_program));
|
||||
|
||||
// enable the sphere program's vertex attribute
|
||||
ctx.enable_vertex_attrib_array(viewport_position_attr);
|
||||
|
||||
// write the spheres in world coordinates
|
||||
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|
||||
|rep| (&asm_to_world * rep).cast::<f32>()
|
||||
).collect();
|
||||
|
||||
// set the resolution
|
||||
let width = canvas.width() as f32;
|
||||
let height = canvas.height() as f32;
|
||||
ctx.uniform2f(resolution_loc.as_ref(), width, height);
|
||||
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
|
||||
|
||||
// pass the scene data
|
||||
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
|
||||
for n in 0..sphere_reps_world.len() {
|
||||
let v = &sphere_reps_world[n];
|
||||
ctx.uniform3fv_with_f32_array(
|
||||
sphere_sp_locs[n].as_ref(),
|
||||
v.rows(0, 3).as_slice()
|
||||
);
|
||||
ctx.uniform2fv_with_f32_array(
|
||||
sphere_lt_locs[n].as_ref(),
|
||||
v.rows(3, 2).as_slice()
|
||||
);
|
||||
ctx.uniform4fv_with_f32_array(
|
||||
sphere_color_locs[n].as_ref(),
|
||||
&scene.spheres.colors_with_opacity[n]
|
||||
);
|
||||
ctx.uniform1f(
|
||||
sphere_highlight_locs[n].as_ref(),
|
||||
scene.spheres.highlights[n]
|
||||
);
|
||||
}
|
||||
|
||||
// pass the display parameters
|
||||
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
|
||||
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
|
||||
|
||||
// bind the viewport vertex position buffer to the position
|
||||
// attribute in the vertex shader
|
||||
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
|
||||
|
||||
// disable the sphere program's vertex attribute
|
||||
ctx.disable_vertex_attrib_array(viewport_position_attr);
|
||||
|
||||
// --- draw the points ---
|
||||
|
||||
if !scene.points.representations.is_empty() {
|
||||
// use the point rendering program
|
||||
ctx.use_program(Some(&point_program));
|
||||
|
||||
// enable the point program's vertex attributes
|
||||
ctx.enable_vertex_attrib_array(point_position_attr);
|
||||
ctx.enable_vertex_attrib_array(point_color_attr);
|
||||
ctx.enable_vertex_attrib_array(point_highlight_attr);
|
||||
ctx.enable_vertex_attrib_array(point_selection_attr);
|
||||
|
||||
// write the points in world coordinates
|
||||
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
|
||||
let point_positions = DMatrix::from_columns(
|
||||
&scene.points.representations.into_iter().map(
|
||||
|rep| &asm_to_world_sp * rep
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
).cast::<f32>();
|
||||
|
||||
// load the point positions and colors into new buffers and
|
||||
// bind them to the corresponding attributes in the vertex
|
||||
// shader
|
||||
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_color_attr, (COLOR_SIZE + 1) as i32, scene.points.colors_with_opacity.concat().as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
|
||||
|
||||
// disable the point program's vertex attributes
|
||||
ctx.disable_vertex_attrib_array(point_position_attr);
|
||||
ctx.disable_vertex_attrib_array(point_color_attr);
|
||||
ctx.disable_vertex_attrib_array(point_highlight_attr);
|
||||
ctx.disable_vertex_attrib_array(point_selection_attr);
|
||||
}
|
||||
|
||||
// --- update the display state ---
|
||||
|
||||
// update the viewpoint
|
||||
assembly_to_world.set(asm_to_world);
|
||||
|
||||
// clear the scene change flag
|
||||
scene_changed.set(
|
||||
pitch_up_val != 0.0
|
||||
|| pitch_down_val != 0.0
|
||||
|| yaw_left_val != 0.0
|
||||
|| yaw_right_val != 0.0
|
||||
|| roll_cw_val != 0.0
|
||||
|| roll_ccw_val != 0.0
|
||||
|| zoom_in_val != 0.0
|
||||
|| zoom_out_val != 0.0
|
||||
|| turntable_val /* BENCHMARKING */
|
||||
);
|
||||
} else {
|
||||
frames_since_last_sample = 0;
|
||||
mean_frame_interval.set(-1.0);
|
||||
}
|
||||
});
|
||||
start_animation_loop();
|
||||
});
|
||||
|
||||
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut navigating = true;
|
||||
let shift = event.shift_key();
|
||||
match event.key().as_str() {
|
||||
"ArrowUp" if shift => zoom_in.set(value),
|
||||
"ArrowDown" if shift => zoom_out.set(value),
|
||||
"ArrowUp" => pitch_up.set(value),
|
||||
"ArrowDown" => pitch_down.set(value),
|
||||
"ArrowRight" if shift => roll_cw.set(value),
|
||||
"ArrowLeft" if shift => roll_ccw.set(value),
|
||||
"ArrowRight" => yaw_right.set(value),
|
||||
"ArrowLeft" => yaw_left.set(value),
|
||||
_ => navigating = false
|
||||
};
|
||||
if navigating {
|
||||
scene_changed.set(true);
|
||||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut manipulating = true;
|
||||
let shift = event.shift_key();
|
||||
match event.key().as_str() {
|
||||
"d" | "D" => translate_pos_x.set(value),
|
||||
"a" | "A" => translate_neg_x.set(value),
|
||||
"w" | "W" if shift => translate_neg_z.set(value),
|
||||
"s" | "S" if shift => translate_pos_z.set(value),
|
||||
"w" | "W" => translate_pos_y.set(value),
|
||||
"s" | "S" => translate_neg_y.set(value),
|
||||
"]" | "}" => shrink_neg.set(value),
|
||||
"[" | "{" => shrink_pos.set(value),
|
||||
_ => manipulating = false
|
||||
};
|
||||
if manipulating {
|
||||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
view! {
|
||||
/* TO DO */
|
||||
// switch back to integer-valued parameters when that becomes possible
|
||||
// again
|
||||
canvas(
|
||||
ref=display,
|
||||
id="display",
|
||||
width="600",
|
||||
height="600",
|
||||
tabindex="0",
|
||||
on:keydown=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
// swap navigation inputs
|
||||
roll_cw.set(yaw_right.get());
|
||||
roll_ccw.set(yaw_left.get());
|
||||
zoom_in.set(pitch_up.get());
|
||||
zoom_out.set(pitch_down.get());
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_z.set(translate_neg_y.get());
|
||||
translate_neg_z.set(translate_pos_y.get());
|
||||
translate_pos_y.set(0.0);
|
||||
translate_neg_y.set(0.0);
|
||||
} else {
|
||||
if event.key() == "Enter" { /* BENCHMARKING */
|
||||
turntable.set_fn(|turn| !turn);
|
||||
scene_changed.set(true);
|
||||
}
|
||||
set_nav_signal(&event, 1.0);
|
||||
set_manip_signal(&event, 1.0);
|
||||
}
|
||||
},
|
||||
on:keyup=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
// swap navigation inputs
|
||||
yaw_right.set(roll_cw.get());
|
||||
yaw_left.set(roll_ccw.get());
|
||||
pitch_up.set(zoom_in.get());
|
||||
pitch_down.set(zoom_out.get());
|
||||
roll_cw.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
zoom_in.set(0.0);
|
||||
zoom_out.set(0.0);
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_y.set(translate_neg_z.get());
|
||||
translate_neg_y.set(translate_pos_z.get());
|
||||
translate_pos_z.set(0.0);
|
||||
translate_neg_z.set(0.0);
|
||||
} else {
|
||||
set_nav_signal(&event, 0.0);
|
||||
set_manip_signal(&event, 0.0);
|
||||
}
|
||||
},
|
||||
on:blur=move |_| {
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
roll_cw.set(0.0);
|
||||
},
|
||||
on:click=move |event: MouseEvent| {
|
||||
// find the nearest element along the pointer direction
|
||||
let (dir, pixel_size) = event_dir(&event);
|
||||
console::log_1(&JsValue::from(dir.to_string()));
|
||||
let mut clicked: Option<(Rc<dyn Element>, f64)> = None;
|
||||
let tangible_elts = state.assembly.elements
|
||||
.get_clone_untracked()
|
||||
.into_iter()
|
||||
.filter(|elt| !elt.ghost().get());
|
||||
for elt in tangible_elts {
|
||||
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
|
||||
Some(depth) => match clicked {
|
||||
Some((_, best_depth)) => {
|
||||
if depth < best_depth {
|
||||
clicked = Some((elt, depth))
|
||||
}
|
||||
},
|
||||
None => clicked = Some((elt, depth))
|
||||
}
|
||||
None => ()
|
||||
};
|
||||
}
|
||||
|
||||
// if we clicked something, select it
|
||||
match clicked {
|
||||
Some((elt, _)) => state.select(&elt, event.shift_key()),
|
||||
None => state.selection.update(|sel| sel.clear())
|
||||
};
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
7
app-proto/src/components/identity.vert
Normal file
7
app-proto/src/components/identity.vert
Normal file
|
@ -0,0 +1,7 @@
|
|||
#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = position;
|
||||
}
|
264
app-proto/src/components/outline.rs
Normal file
264
app-proto/src/components/outline.rs
Normal file
|
@ -0,0 +1,264 @@
|
|||
use itertools::Itertools;
|
||||
use std::rc::Rc;
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{
|
||||
KeyboardEvent,
|
||||
MouseEvent,
|
||||
wasm_bindgen::JsCast
|
||||
};
|
||||
|
||||
use crate::{
|
||||
AppState,
|
||||
assembly::{
|
||||
Element,
|
||||
HalfCurvatureRegulator,
|
||||
InversiveDistanceRegulator,
|
||||
Regulator
|
||||
},
|
||||
specified::SpecifiedValue
|
||||
};
|
||||
|
||||
// an editable view of a regulator
|
||||
#[component(inline_props)]
|
||||
fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
|
||||
// get the regulator's measurement and set point signals
|
||||
let measurement = regulator.measurement();
|
||||
let set_point = regulator.set_point();
|
||||
|
||||
// the `valid` signal tracks whether the last entered value is a valid set
|
||||
// point specification
|
||||
let valid = create_signal(true);
|
||||
|
||||
// the `value` signal holds the current set point specification
|
||||
let value = create_signal(
|
||||
set_point.with_untracked(|set_pt| set_pt.spec.clone())
|
||||
);
|
||||
|
||||
// this `reset_value` closure resets the input value to the regulator's set
|
||||
// point specification
|
||||
let reset_value = move || {
|
||||
batch(|| {
|
||||
valid.set(true);
|
||||
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
|
||||
})
|
||||
};
|
||||
|
||||
// reset the input value whenever the regulator's set point specification
|
||||
// is updated
|
||||
create_effect(reset_value);
|
||||
|
||||
view! {
|
||||
input(
|
||||
r#type="text",
|
||||
class=move || {
|
||||
if valid.get() {
|
||||
set_point.with(|set_pt| {
|
||||
if set_pt.is_present() {
|
||||
"regulator-input constraint"
|
||||
} else {
|
||||
"regulator-input"
|
||||
}
|
||||
})
|
||||
} else {
|
||||
"regulator-input invalid"
|
||||
}
|
||||
},
|
||||
placeholder=measurement.with(|result| result.to_string()),
|
||||
bind:value=value,
|
||||
on:change=move |_| {
|
||||
valid.set(
|
||||
match SpecifiedValue::try_from(value.get_clone_untracked()) {
|
||||
Ok(set_pt) => {
|
||||
set_point.set(set_pt);
|
||||
true
|
||||
}
|
||||
Err(_) => false
|
||||
}
|
||||
)
|
||||
},
|
||||
on:keydown={
|
||||
move |event: KeyboardEvent| {
|
||||
match event.key().as_str() {
|
||||
"Escape" => reset_value(),
|
||||
_ => ()
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait OutlineItem {
|
||||
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View;
|
||||
}
|
||||
|
||||
impl OutlineItem for InversiveDistanceRegulator {
|
||||
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View {
|
||||
let other_subject_label = if self.subjects[0] == element.clone() {
|
||||
self.subjects[1].label()
|
||||
} else {
|
||||
self.subjects[0].label()
|
||||
}.clone();
|
||||
view! {
|
||||
li(class="regulator") {
|
||||
div(class="regulator-label") { (other_subject_label) }
|
||||
div(class="regulator-type") { "Inversive distance" }
|
||||
RegulatorInput(regulator=self)
|
||||
div(class="status")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl OutlineItem for HalfCurvatureRegulator {
|
||||
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
|
||||
view! {
|
||||
li(class="regulator") {
|
||||
div(class="regulator-label") // for spacing
|
||||
div(class="regulator-type") { "Half-curvature" }
|
||||
RegulatorInput(regulator=self)
|
||||
div(class="status")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a list item that shows an element in an outline view of an assembly
|
||||
#[component(inline_props)]
|
||||
fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
|
||||
let state = use_context::<AppState>();
|
||||
let class = {
|
||||
let element_for_class = element.clone();
|
||||
state.selection.map(
|
||||
move |sel| if sel.contains(&element_for_class) { "selected" } else { "" }
|
||||
)
|
||||
};
|
||||
let label = element.label().clone();
|
||||
let representation = element.representation().clone();
|
||||
let rep_components = move || {
|
||||
representation.with(
|
||||
|rep| rep.iter().map(
|
||||
|u| {
|
||||
let u_str = format!("{:.3}", u).replace("-", "\u{2212}");
|
||||
view! { div { (u_str) } }
|
||||
}
|
||||
).collect::<Vec<_>>()
|
||||
)
|
||||
};
|
||||
let regulated = element.regulators().map(|regs| regs.len() > 0);
|
||||
let regulator_list = element.regulators().map(
|
||||
|regs| regs
|
||||
.clone()
|
||||
.into_iter()
|
||||
.sorted_by_key(|reg| reg.subjects().len())
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
let details_node = create_node_ref();
|
||||
view! {
|
||||
li {
|
||||
details(ref=details_node) {
|
||||
summary(
|
||||
class=class.get(),
|
||||
on:keydown={
|
||||
let element_for_handler = element.clone();
|
||||
move |event: KeyboardEvent| {
|
||||
match event.key().as_str() {
|
||||
"Enter" => {
|
||||
state.select(&element_for_handler, event.shift_key());
|
||||
event.prevent_default();
|
||||
},
|
||||
"ArrowRight" if regulated.get() => {
|
||||
let _ = details_node
|
||||
.get()
|
||||
.unchecked_into::<web_sys::Element>()
|
||||
.set_attribute("open", "");
|
||||
},
|
||||
"ArrowLeft" => {
|
||||
let _ = details_node
|
||||
.get()
|
||||
.unchecked_into::<web_sys::Element>()
|
||||
.remove_attribute("open");
|
||||
},
|
||||
_ => ()
|
||||
}
|
||||
}
|
||||
}
|
||||
) {
|
||||
div(
|
||||
class="element-switch",
|
||||
on:click=|event: MouseEvent| event.stop_propagation()
|
||||
)
|
||||
div(
|
||||
class="element",
|
||||
on:click={
|
||||
let state_for_handler = state.clone();
|
||||
let element_for_handler = element.clone();
|
||||
move |event: MouseEvent| {
|
||||
state_for_handler.select(&element_for_handler, event.shift_key());
|
||||
event.stop_propagation();
|
||||
event.prevent_default();
|
||||
}
|
||||
}
|
||||
) {
|
||||
div(class="element-label") { (label) }
|
||||
div(class="element-representation") { (rep_components) }
|
||||
input(
|
||||
r#type="checkbox",
|
||||
bind:checked=element.ghost(),
|
||||
on:click=|event: MouseEvent| event.stop_propagation()
|
||||
)
|
||||
}
|
||||
}
|
||||
ul(class="regulators") {
|
||||
Keyed(
|
||||
list=regulator_list,
|
||||
view=move |reg| reg.outline_item(&element),
|
||||
key=|reg| reg.serial()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a component that lists the elements of the current assembly, showing each
|
||||
// element's regulators in a collapsible sub-list. its implementation is based
|
||||
// on Kate Morley's HTML + CSS tree views:
|
||||
//
|
||||
// https://iamkate.com/code/tree-views/
|
||||
//
|
||||
#[component]
|
||||
pub fn Outline() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
// list the elements alphabetically by ID
|
||||
/* TO DO */
|
||||
// this code is designed to generalize easily to other sort keys. if we only
|
||||
// ever wanted to sort by ID, we could do that more simply using the
|
||||
// `elements_by_id` index
|
||||
let element_list = state.assembly.elements.map(
|
||||
|elts| elts
|
||||
.clone()
|
||||
.into_iter()
|
||||
.sorted_by_key(|elt| elt.id().clone())
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
|
||||
view! {
|
||||
ul(
|
||||
id="outline",
|
||||
on:click={
|
||||
let state = use_context::<AppState>();
|
||||
move |_| state.selection.update(|sel| sel.clear())
|
||||
}
|
||||
) {
|
||||
Keyed(
|
||||
list=element_list,
|
||||
view=|elt| view! {
|
||||
ElementOutlineItem(element=elt)
|
||||
},
|
||||
key=|elt| elt.serial()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
19
app-proto/src/components/point.frag
Normal file
19
app-proto/src/components/point.frag
Normal file
|
@ -0,0 +1,19 @@
|
|||
#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
in vec4 point_color;
|
||||
in float point_highlight;
|
||||
in float total_radius;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
void main() {
|
||||
float r = total_radius * length(2.*gl_PointCoord - vec2(1.));
|
||||
|
||||
const float POINT_RADIUS = 4.;
|
||||
float border = smoothstep(POINT_RADIUS - 1., POINT_RADIUS, r);
|
||||
float disk = 1. - smoothstep(total_radius - 1., total_radius, r);
|
||||
vec4 color = mix(point_color, vec4(1.), border * point_highlight);
|
||||
outColor = vec4(vec3(1.), disk) * color;
|
||||
}
|
24
app-proto/src/components/point.vert
Normal file
24
app-proto/src/components/point.vert
Normal file
|
@ -0,0 +1,24 @@
|
|||
#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
in vec4 color;
|
||||
in float highlight;
|
||||
in float selected;
|
||||
|
||||
out vec4 point_color;
|
||||
out float point_highlight;
|
||||
out float total_radius;
|
||||
|
||||
// camera
|
||||
const float focal_slope = 0.3;
|
||||
|
||||
void main() {
|
||||
total_radius = 5. + 0.5*selected;
|
||||
|
||||
float depth = -focal_slope * position.z;
|
||||
gl_Position = vec4(position.xy / depth, 0., 1.);
|
||||
gl_PointSize = 2.*total_radius;
|
||||
|
||||
point_color = color;
|
||||
point_highlight = highlight;
|
||||
}
|
235
app-proto/src/components/spheres.frag
Normal file
235
app-proto/src/components/spheres.frag
Normal file
|
@ -0,0 +1,235 @@
|
|||
#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
// --- inversive geometry ---
|
||||
|
||||
struct vecInv {
|
||||
vec3 sp;
|
||||
vec2 lt;
|
||||
};
|
||||
|
||||
// --- uniforms ---
|
||||
|
||||
// assembly
|
||||
const int SPHERE_MAX = 200;
|
||||
uniform int sphere_cnt;
|
||||
uniform vecInv sphere_list[SPHERE_MAX];
|
||||
uniform vec4 color_list[SPHERE_MAX];
|
||||
uniform float highlight_list[SPHERE_MAX];
|
||||
|
||||
// view
|
||||
uniform vec2 resolution;
|
||||
uniform float shortdim;
|
||||
|
||||
// controls
|
||||
uniform int layer_threshold;
|
||||
uniform bool debug_mode;
|
||||
|
||||
// light and camera
|
||||
const float focal_slope = 0.3;
|
||||
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||||
const float ixn_threshold = 0.005;
|
||||
const float INTERIOR_DIMMING = 0.7;
|
||||
|
||||
// --- sRGB ---
|
||||
|
||||
// map colors from RGB space to sRGB space, as specified in the sRGB standard
|
||||
// (IEC 61966-2-1:1999)
|
||||
//
|
||||
// https://www.color.org/sRGB.pdf
|
||||
// https://www.color.org/chardata/rgb/srgb.xalter
|
||||
//
|
||||
// in RGB space, color value is proportional to light intensity, so linear
|
||||
// color-vector interpolation corresponds to physical light mixing. in sRGB
|
||||
// space, the color encoding used by many monitors, we use more of the value
|
||||
// interval to represent low intensities, and less of the interval to represent
|
||||
// high intensities. this improves color quantization
|
||||
|
||||
float sRGB(float t) {
|
||||
if (t <= 0.0031308) {
|
||||
return 12.92*t;
|
||||
} else {
|
||||
return 1.055*pow(t, 5./12.) - 0.055;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 sRGB(vec3 color) {
|
||||
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||||
}
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct Fragment {
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
vec4 color;
|
||||
};
|
||||
|
||||
Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) {
|
||||
// the expression for normal needs to be checked. it's supposed to give the
|
||||
// negative gradient of the lorentz product between the impact point vector
|
||||
// and the sphere vector with respect to the coordinates of the impact
|
||||
// point. i calculated it in my head and decided that the result looked good
|
||||
// enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return Fragment(pt, normal, vec4(illum * base_color.rgb, base_color.a));
|
||||
}
|
||||
|
||||
float intersection_dist(Fragment a, Fragment b) {
|
||||
float intersection_sin = length(cross(a.normal, b.normal));
|
||||
vec3 disp = a.pt - b.pt;
|
||||
return max(
|
||||
abs(dot(a.normal, disp)),
|
||||
abs(dot(b.normal, disp))
|
||||
) / intersection_sin;
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
struct TaggedDepth {
|
||||
float depth;
|
||||
float dimming;
|
||||
int id;
|
||||
};
|
||||
|
||||
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
|
||||
// the linear function `b*u + c`
|
||||
const float DEG_THRESHOLD = 1e-9;
|
||||
|
||||
// the depths, represented as multiples of `dir`, where the line generated by
|
||||
// `dir` hits the sphere represented by `v`. if both depths are positive, the
|
||||
// smaller one is returned in the first component. if only one depth is
|
||||
// positive, it could be returned in either component
|
||||
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
if (adjust < 1.) {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
//
|
||||
// a*u^2 + b*u + c
|
||||
//
|
||||
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
|
||||
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
|
||||
// have the same sign, `lin_root` will be the one closer to `u = 0`
|
||||
float square_rect_ratio = 1. + sqrt(1. - adjust);
|
||||
float lin_root = -(2.*c)/b / square_rect_ratio;
|
||||
if (abs(a) > DEG_THRESHOLD * abs(b)) {
|
||||
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
|
||||
} else {
|
||||
return vec2(lin_root, -1.);
|
||||
}
|
||||
} else {
|
||||
// the line through `dir` misses the sphere completely
|
||||
return vec2(-1., -1.);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
// cast rays through the spheres
|
||||
const int LAYER_MAX = 12;
|
||||
TaggedDepth top_hits [LAYER_MAX];
|
||||
int layer_cnt = 0;
|
||||
for (int id = 0; id < sphere_cnt; ++id) {
|
||||
// find out where the ray hits the sphere
|
||||
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||||
|
||||
// insertion-sort the points we hit into the hit list
|
||||
float dimming = 1.;
|
||||
for (int side = 0; side < 2; ++side) {
|
||||
float depth = hit_depths[side];
|
||||
if (depth > 0.) {
|
||||
for (int layer = layer_cnt; layer >= 0; --layer) {
|
||||
if (layer < 1 || top_hits[layer-1].depth <= depth) {
|
||||
// we're not as close to the screen as the hit before
|
||||
// the empty slot, so insert here
|
||||
if (layer < LAYER_MAX) {
|
||||
top_hits[layer] = TaggedDepth(depth, dimming, id);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// we're closer to the screen than the hit before the
|
||||
// empty slot, so move that hit into the empty slot
|
||||
top_hits[layer] = top_hits[layer-1];
|
||||
}
|
||||
}
|
||||
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
|
||||
dimming = INTERIOR_DIMMING;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
// in debug mode, show the layer count instead of the shaded image
|
||||
if (debug_mode) {
|
||||
// at the bottom of the screen, show the color scale instead of the
|
||||
// layer count
|
||||
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||||
|
||||
// convert number to color
|
||||
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
|
||||
vec3 color = mod(vec3(bits), 2.);
|
||||
if (layer_cnt % 16 >= 8) {
|
||||
color = mix(color, vec3(0.5), 0.5);
|
||||
}
|
||||
outColor = vec4(color, 1.);
|
||||
return;
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
int layer = layer_cnt - 1;
|
||||
TaggedDepth hit = top_hits[layer];
|
||||
vec4 sphere_color = color_list[hit.id];
|
||||
Fragment frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
|
||||
);
|
||||
float highlight_next = highlight_list[hit.id];
|
||||
--layer;
|
||||
for (; layer >= layer_threshold; --layer) {
|
||||
// load the current fragment
|
||||
Fragment frag = frag_next;
|
||||
float highlight = highlight_next;
|
||||
|
||||
// shade the next fragment
|
||||
hit = top_hits[layer];
|
||||
sphere_color = color_list[hit.id];
|
||||
frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
|
||||
);
|
||||
highlight_next = highlight_list[hit.id];
|
||||
|
||||
// highlight intersections
|
||||
float ixn_dist = intersection_dist(frag, frag_next);
|
||||
float max_highlight = max(highlight, highlight_next);
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
|
||||
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
|
||||
|
||||
// highlight cusps
|
||||
float cusp_cos = abs(dot(dir, frag.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
|
||||
|
||||
// composite the current fragment
|
||||
color = mix(color, frag.color.rgb, frag.color.a);
|
||||
}
|
||||
color = mix(color, frag_next.color.rgb, frag_next.color.a);
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
947
app-proto/src/components/test_assembly_chooser.rs
Normal file
947
app-proto/src/components/test_assembly_chooser.rs
Normal file
|
@ -0,0 +1,947 @@
|
|||
use itertools::izip;
|
||||
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc};
|
||||
use nalgebra::Vector3;
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{console, wasm_bindgen::JsValue};
|
||||
|
||||
use crate::{
|
||||
AppState,
|
||||
engine,
|
||||
engine::DescentHistory,
|
||||
assembly::{
|
||||
Assembly,
|
||||
Element,
|
||||
ElementColor,
|
||||
InversiveDistanceRegulator,
|
||||
Point,
|
||||
Sphere
|
||||
},
|
||||
specified::SpecifiedValue
|
||||
};
|
||||
|
||||
// --- loaders ---
|
||||
|
||||
/* DEBUG */
|
||||
// each of these functions loads an example assembly for testing. once we've
|
||||
// done more work on saving and loading assemblies, we should come back to this
|
||||
// code to see if it can be simplified
|
||||
|
||||
fn load_gen_assemb(assembly: &Assembly) {
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("gemini_a"),
|
||||
String::from("Castor"),
|
||||
[1.00_f32, 0.25_f32, 0.00_f32],
|
||||
engine::sphere(0.5, 0.5, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("gemini_b"),
|
||||
String::from("Pollux"),
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
engine::sphere(-0.5, -0.5, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("ursa_major"),
|
||||
String::from("Ursa major"),
|
||||
[0.25_f32, 0.00_f32, 1.00_f32],
|
||||
engine::sphere(-0.5, 0.5, 0.0, 0.75)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("ursa_minor"),
|
||||
String::from("Ursa minor"),
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
engine::sphere(0.5, -0.5, 0.0, 0.5)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("moon_deimos"),
|
||||
String::from("Deimos"),
|
||||
[0.75_f32, 0.75_f32, 0.00_f32],
|
||||
engine::sphere(0.0, 0.15, 1.0, 0.25)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("moon_phobos"),
|
||||
String::from("Phobos"),
|
||||
[0.00_f32, 0.75_f32, 0.50_f32],
|
||||
engine::sphere(0.0, -0.15, -1.0, 0.25)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
fn load_low_curv_assemb(assembly: &Assembly) {
|
||||
// create the spheres
|
||||
let a = 0.75_f64.sqrt();
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"central".to_string(),
|
||||
"Central".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"assemb_plane".to_string(),
|
||||
"Assembly plane".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"side1".to_string(),
|
||||
"Side 1".to_string(),
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"side2".to_string(),
|
||||
"Side 2".to_string(),
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"side3".to_string(),
|
||||
"Side 3".to_string(),
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"corner1".to_string(),
|
||||
"Corner 1".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"corner2".to_string(),
|
||||
"Corner 2".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
String::from("corner3"),
|
||||
String::from("Corner 3"),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
|
||||
// impose the desired tangencies and make the sides planar
|
||||
let index_range = 1..=3;
|
||||
let [central, assemb_plane] = ["central", "assemb_plane"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
let sides = index_range.clone().map(
|
||||
|k| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("side{k}")].clone()
|
||||
)
|
||||
);
|
||||
let corners = index_range.map(
|
||||
|k| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("corner{k}")].clone()
|
||||
)
|
||||
);
|
||||
for plane in [assemb_plane.clone()].into_iter().chain(sides.clone()) {
|
||||
// fix the curvature of each plane
|
||||
let curvature = plane.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
}
|
||||
let all_perpendicular = [central.clone()].into_iter()
|
||||
.chain(sides.clone())
|
||||
.chain(corners.clone());
|
||||
for sphere in all_perpendicular {
|
||||
// make each side and packed sphere perpendicular to the assembly plane
|
||||
let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]);
|
||||
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(right_angle));
|
||||
}
|
||||
for sphere in sides.clone().chain(corners.clone()) {
|
||||
// make each side and corner sphere tangent to the central sphere
|
||||
let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
for (side_index, side) in sides.enumerate() {
|
||||
// make each side tangent to the two adjacent corner spheres
|
||||
for (corner_index, corner) in corners.clone().enumerate() {
|
||||
if side_index != corner_index {
|
||||
let tangency = InversiveDistanceRegulator::new([side.clone(), corner]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn load_pointed_assemb(assembly: &Assembly) {
|
||||
let _ = assembly.try_insert_element(
|
||||
Point::new(
|
||||
format!("point_front"),
|
||||
format!("Front point"),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::point(0.0, 0.0, FRAC_1_SQRT_2)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Point::new(
|
||||
format!("point_back"),
|
||||
format!("Back point"),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::point(0.0, 0.0, -FRAC_1_SQRT_2)
|
||||
)
|
||||
);
|
||||
for index_x in 0..=1 {
|
||||
for index_y in 0..=1 {
|
||||
let x = index_x as f64 - 0.5;
|
||||
let y = index_y as f64 - 0.5;
|
||||
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
format!("sphere{index_x}{index_y}"),
|
||||
format!("Sphere {index_x}{index_y}"),
|
||||
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
|
||||
engine::sphere(x, y, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
|
||||
let _ = assembly.try_insert_element(
|
||||
Point::new(
|
||||
format!("point{index_x}{index_y}"),
|
||||
format!("Point {index_x}{index_y}"),
|
||||
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
|
||||
engine::point(x, y, 0.0)
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// to finish describing the tridiminished icosahedron, set the inversive
|
||||
// distance regulators as follows:
|
||||
// A-A -0.25
|
||||
// A-B "
|
||||
// B-C "
|
||||
// C-C "
|
||||
// A-C -0.25 * φ^2 = -0.6545084971874737
|
||||
fn load_tridim_icosahedron_assemb(assembly: &Assembly) {
|
||||
// create the vertices
|
||||
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.25_f32];
|
||||
const COLOR_B: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
|
||||
const COLOR_C: ElementColor = [0.25_f32, 0.50_f32, 1.00_f32];
|
||||
let vertices = [
|
||||
Point::new(
|
||||
"a1".to_string(),
|
||||
"A₁".to_string(),
|
||||
COLOR_A,
|
||||
engine::point(0.25, 0.75, 0.75)
|
||||
),
|
||||
Point::new(
|
||||
"a2".to_string(),
|
||||
"A₂".to_string(),
|
||||
COLOR_A,
|
||||
engine::point(0.75, 0.25, 0.75)
|
||||
),
|
||||
Point::new(
|
||||
"a3".to_string(),
|
||||
"A₃".to_string(),
|
||||
COLOR_A,
|
||||
engine::point(0.75, 0.75, 0.25)
|
||||
),
|
||||
Point::new(
|
||||
"b1".to_string(),
|
||||
"B₁".to_string(),
|
||||
COLOR_B,
|
||||
engine::point(0.75, -0.25, -0.25)
|
||||
),
|
||||
Point::new(
|
||||
"b2".to_string(),
|
||||
"B₂".to_string(),
|
||||
COLOR_B,
|
||||
engine::point(-0.25, 0.75, -0.25)
|
||||
),
|
||||
Point::new(
|
||||
"b3".to_string(),
|
||||
"B₃".to_string(),
|
||||
COLOR_B,
|
||||
engine::point(-0.25, -0.25, 0.75)
|
||||
),
|
||||
Point::new(
|
||||
"c1".to_string(),
|
||||
"C₁".to_string(),
|
||||
COLOR_C,
|
||||
engine::point(0.0, -1.0, -1.0)
|
||||
),
|
||||
Point::new(
|
||||
"c2".to_string(),
|
||||
"C₂".to_string(),
|
||||
COLOR_C,
|
||||
engine::point(-1.0, 0.0, -1.0)
|
||||
),
|
||||
Point::new(
|
||||
"c3".to_string(),
|
||||
"C₃".to_string(),
|
||||
COLOR_C,
|
||||
engine::point(-1.0, -1.0, 0.0)
|
||||
)
|
||||
];
|
||||
for vertex in vertices {
|
||||
let _ = assembly.try_insert_element(vertex);
|
||||
}
|
||||
|
||||
// create the faces
|
||||
const COLOR_FACE: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
|
||||
let frac_1_sqrt_6 = 1.0 / 6.0_f64.sqrt();
|
||||
let frac_2_sqrt_6 = 2.0 * frac_1_sqrt_6;
|
||||
let faces = [
|
||||
Sphere::new(
|
||||
"face1".to_string(),
|
||||
"Face 1".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
|
||||
),
|
||||
Sphere::new(
|
||||
"face2".to_string(),
|
||||
"Face 2".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
|
||||
),
|
||||
Sphere::new(
|
||||
"face3".to_string(),
|
||||
"Face 3".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, 0.0)
|
||||
)
|
||||
];
|
||||
for face in faces {
|
||||
face.ghost().set(true);
|
||||
let _ = assembly.try_insert_element(face);
|
||||
}
|
||||
|
||||
let index_range = 1..=3;
|
||||
for j in index_range.clone() {
|
||||
// make each face planar
|
||||
let face = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("face{j}")].clone()
|
||||
);
|
||||
let curvature_regulator = face.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap()
|
||||
);
|
||||
|
||||
// put each A vertex on the face it belongs to
|
||||
let vertex_a = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("a{j}")].clone()
|
||||
);
|
||||
let incidence_a = InversiveDistanceRegulator::new([face.clone(), vertex_a.clone()]);
|
||||
incidence_a.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence_a));
|
||||
|
||||
// regulate the B-C vertex distances
|
||||
let vertices_bc = ["b", "c"].map(
|
||||
|series| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("{series}{j}")].clone()
|
||||
)
|
||||
);
|
||||
assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new(vertices_bc))
|
||||
);
|
||||
|
||||
// get the pair of indices adjacent to `j`
|
||||
let adjacent_indices = [j % 3 + 1, (j + 1) % 3 + 1];
|
||||
|
||||
for k in adjacent_indices.clone() {
|
||||
for series in ["b", "c"] {
|
||||
// put each B and C vertex on the faces it belongs to
|
||||
let vertex = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("{series}{k}")].clone()
|
||||
);
|
||||
let incidence = InversiveDistanceRegulator::new([face.clone(), vertex.clone()]);
|
||||
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence));
|
||||
|
||||
// regulate the A-B and A-C vertex distances
|
||||
assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new([vertex_a.clone(), vertex]))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// regulate the A-A and C-C vertex distances
|
||||
let adjacent_pairs = ["a", "c"].map(
|
||||
|series| adjacent_indices.map(
|
||||
|index| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("{series}{index}")].clone()
|
||||
)
|
||||
)
|
||||
);
|
||||
for pair in adjacent_pairs {
|
||||
assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new(pair))
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// to finish describing the dodecahedral circle packing, set the inversive
|
||||
// distance regulators to -1. some of the regulators have already been set
|
||||
fn load_dodeca_packing_assemb(assembly: &Assembly) {
|
||||
// add the substrate
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"substrate".to_string(),
|
||||
"Substrate".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let substrate = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id["substrate"].clone()
|
||||
);
|
||||
|
||||
// fix the substrate's curvature
|
||||
substrate.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
).set_point().set(
|
||||
SpecifiedValue::try_from("0.5".to_string()).unwrap()
|
||||
);
|
||||
|
||||
// add the circles to be packed
|
||||
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.00_f32];
|
||||
const COLOR_B: ElementColor = [1.00_f32, 0.00_f32, 0.25_f32];
|
||||
const COLOR_C: ElementColor = [0.25_f32, 0.00_f32, 1.00_f32];
|
||||
let phi = 0.5 + 1.25_f64.sqrt(); /* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized
|
||||
let phi_inv = 1.0 / phi;
|
||||
let coord_scale = (phi + 2.0).sqrt();
|
||||
let face_scales = [phi_inv, (13.0 / 12.0) / coord_scale];
|
||||
let face_radii = [phi_inv, 5.0 / 12.0];
|
||||
let mut faces = Vec::<Rc<dyn Element>>::new();
|
||||
let subscripts = ["₀", "₁"];
|
||||
for j in 0..2 {
|
||||
for k in 0..2 {
|
||||
let small_coord = face_scales[k] * (2.0*(j as f64) - 1.0);
|
||||
let big_coord = face_scales[k] * (2.0*(k as f64) - 1.0) * phi;
|
||||
|
||||
let id_num = format!("{j}{k}");
|
||||
let label_sub = format!("{}{}", subscripts[j], subscripts[k]);
|
||||
|
||||
// add the A face
|
||||
let id_a = format!("a{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
id_a.clone(),
|
||||
format!("A{label_sub}"),
|
||||
COLOR_A,
|
||||
engine::sphere(0.0, small_coord, big_coord, face_radii[k])
|
||||
)
|
||||
);
|
||||
faces.push(
|
||||
assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&id_a].clone()
|
||||
)
|
||||
);
|
||||
|
||||
// add the B face
|
||||
let id_b = format!("b{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
id_b.clone(),
|
||||
format!("B{label_sub}"),
|
||||
COLOR_B,
|
||||
engine::sphere(small_coord, big_coord, 0.0, face_radii[k])
|
||||
)
|
||||
);
|
||||
faces.push(
|
||||
assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&id_b].clone()
|
||||
)
|
||||
);
|
||||
|
||||
// add the C face
|
||||
let id_c = format!("c{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
id_c.clone(),
|
||||
format!("C{label_sub}"),
|
||||
COLOR_C,
|
||||
engine::sphere(big_coord, 0.0, small_coord, face_radii[k])
|
||||
)
|
||||
);
|
||||
faces.push(
|
||||
assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&id_c].clone()
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// make each face sphere perpendicular to the substrate
|
||||
for face in faces {
|
||||
let right_angle = InversiveDistanceRegulator::new([face, substrate.clone()]);
|
||||
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(right_angle));
|
||||
}
|
||||
|
||||
// set up the tangencies that define the packing
|
||||
for [long_edge_plane, short_edge_plane] in [["a", "b"], ["b", "c"], ["c", "a"]] {
|
||||
for k in 0..2 {
|
||||
let long_edge_ids = [
|
||||
format!("{long_edge_plane}{k}0"),
|
||||
format!("{long_edge_plane}{k}1")
|
||||
];
|
||||
let short_edge_ids = [
|
||||
format!("{short_edge_plane}0{k}"),
|
||||
format!("{short_edge_plane}1{k}")
|
||||
];
|
||||
let [long_edge, short_edge] = [long_edge_ids, short_edge_ids].map(
|
||||
|edge_ids| edge_ids.map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&id].clone()
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
// set up the short-edge tangency
|
||||
let short_tangency = InversiveDistanceRegulator::new(short_edge.clone());
|
||||
if k == 0 {
|
||||
short_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
}
|
||||
assembly.insert_regulator(Rc::new(short_tangency));
|
||||
|
||||
// set up the side tangencies
|
||||
for i in 0..2 {
|
||||
for j in 0..2 {
|
||||
let side_tangency = InversiveDistanceRegulator::new(
|
||||
[long_edge[i].clone(), short_edge[j].clone()]
|
||||
);
|
||||
if i == 0 && k == 0 {
|
||||
side_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
}
|
||||
assembly.insert_regulator(Rc::new(side_tangency));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// the initial configuration of this test assembly deliberately violates the
|
||||
// constraints, so loading the assembly will trigger a non-trivial realization
|
||||
fn load_balanced_assemb(assembly: &Assembly) {
|
||||
// create the spheres
|
||||
const R_OUTER: f64 = 10.0;
|
||||
const R_INNER: f64 = 4.0;
|
||||
let spheres = [
|
||||
Sphere::new(
|
||||
"outer".to_string(),
|
||||
"Outer".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, R_OUTER)
|
||||
),
|
||||
Sphere::new(
|
||||
"a".to_string(),
|
||||
"A".to_string(),
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
engine::sphere(0.0, 4.0, 0.0, R_INNER)
|
||||
),
|
||||
Sphere::new(
|
||||
"b".to_string(),
|
||||
"B".to_string(),
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
engine::sphere(0.0, -4.0, 0.0, R_INNER)
|
||||
),
|
||||
];
|
||||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
// get references to the spheres
|
||||
let [outer, a, b] = ["outer", "a", "b"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
// fix the diameters of the outer, sun, and moon spheres
|
||||
for (sphere, radius) in [
|
||||
(outer.clone(), R_OUTER),
|
||||
(a.clone(), R_INNER),
|
||||
(b.clone(), R_INNER)
|
||||
] {
|
||||
let curvature_regulator = sphere.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
let curvature = 0.5 / radius;
|
||||
curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from(curvature.to_string()).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
// set the inversive distances between the spheres. as described above, the
|
||||
// initial configuration deliberately violates these constraints
|
||||
for inner in [a, b] {
|
||||
let tangency = InversiveDistanceRegulator::new([outer.clone(), inner]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
||||
// the initial configuration of this test assembly deliberately violates the
|
||||
// constraints, so loading the assembly will trigger a non-trivial realization
|
||||
fn load_off_center_assemb(assembly: &Assembly) {
|
||||
// create a point almost at the origin and a sphere centered on the origin
|
||||
let _ = assembly.try_insert_element(
|
||||
Point::new(
|
||||
"point".to_string(),
|
||||
"Point".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::point(1e-9, 0.0, 0.0)
|
||||
),
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
"sphere".to_string(),
|
||||
"Sphere".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.0)
|
||||
),
|
||||
);
|
||||
|
||||
// get references to the elements
|
||||
let point_and_sphere = ["point", "sphere"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
// put the point on the sphere
|
||||
let incidence = InversiveDistanceRegulator::new(point_and_sphere);
|
||||
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence));
|
||||
}
|
||||
|
||||
// setting the inversive distances between the vertices to -2 gives a regular
|
||||
// tetrahedron with side length 1, whose insphere and circumsphere have radii
|
||||
// sqrt(1/6) and sqrt(3/2), respectively. to measure those radii, set an
|
||||
// inversive distance of -1 between the insphere and each face, and then set an
|
||||
// inversive distance of 0 between the circumsphere and each vertex
|
||||
fn load_radius_ratio_assemb(assembly: &Assembly) {
|
||||
let index_range = 1..=4;
|
||||
|
||||
// create the spheres
|
||||
const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
|
||||
let spheres = [
|
||||
Sphere::new(
|
||||
"sphere_faces".to_string(),
|
||||
"Insphere".to_string(),
|
||||
GRAY,
|
||||
engine::sphere(0.0, 0.0, 0.0, 0.5)
|
||||
),
|
||||
Sphere::new(
|
||||
"sphere_vertices".to_string(),
|
||||
"Circumsphere".to_string(),
|
||||
GRAY,
|
||||
engine::sphere(0.0, 0.0, 0.0, 0.25)
|
||||
)
|
||||
];
|
||||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
// create the vertices
|
||||
let vertices = izip!(
|
||||
index_range.clone(),
|
||||
[
|
||||
[1.00_f32, 0.50_f32, 0.75_f32],
|
||||
[1.00_f32, 0.75_f32, 0.50_f32],
|
||||
[1.00_f32, 1.00_f32, 0.50_f32],
|
||||
[0.75_f32, 0.50_f32, 1.00_f32]
|
||||
].into_iter(),
|
||||
[
|
||||
engine::point(-0.6, -0.8, -0.6),
|
||||
engine::point(-0.6, 0.8, 0.6),
|
||||
engine::point(0.6, -0.8, 0.6),
|
||||
engine::point(0.6, 0.8, -0.6)
|
||||
].into_iter()
|
||||
).map(
|
||||
|(k, color, representation)| {
|
||||
Point::new(
|
||||
format!("v{k}"),
|
||||
format!("Vertex {k}"),
|
||||
color,
|
||||
representation
|
||||
)
|
||||
}
|
||||
);
|
||||
for vertex in vertices {
|
||||
let _ = assembly.try_insert_element(vertex);
|
||||
}
|
||||
|
||||
// create the faces
|
||||
let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize();
|
||||
let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6));
|
||||
let faces = izip!(
|
||||
index_range.clone(),
|
||||
[
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
[1.00_f32, 0.25_f32, 0.00_f32],
|
||||
[0.75_f32, 0.75_f32, 0.00_f32],
|
||||
[0.25_f32, 0.00_f32, 1.00_f32]
|
||||
].into_iter(),
|
||||
[
|
||||
engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0)
|
||||
].into_iter()
|
||||
).map(
|
||||
|(k, color, representation)| {
|
||||
Sphere::new(
|
||||
format!("f{k}"),
|
||||
format!("Face {k}"),
|
||||
color,
|
||||
representation
|
||||
)
|
||||
}
|
||||
);
|
||||
for face in faces {
|
||||
face.ghost().set(true);
|
||||
let _ = assembly.try_insert_element(face);
|
||||
}
|
||||
|
||||
// impose the constraints
|
||||
for j in index_range.clone() {
|
||||
let [face_j, vertex_j] = [
|
||||
format!("f{j}"),
|
||||
format!("v{j}")
|
||||
].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
// make the faces planar
|
||||
let curvature_regulator = face_j.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap()
|
||||
);
|
||||
|
||||
for k in index_range.clone().filter(|&index| index != j) {
|
||||
let vertex_k = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("v{k}")].clone()
|
||||
);
|
||||
|
||||
// fix the distances between the vertices
|
||||
if j < k {
|
||||
let distance_regulator = InversiveDistanceRegulator::new(
|
||||
[vertex_j.clone(), vertex_k.clone()]
|
||||
);
|
||||
assembly.insert_regulator(Rc::new(distance_regulator));
|
||||
}
|
||||
|
||||
// put the vertices on the faces
|
||||
let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]);
|
||||
incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence_regulator));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// to finish setting up the problem, fix the following curvatures:
|
||||
// sun 1
|
||||
// moon 5/3 = 1.666666666666666...
|
||||
// chain1 2
|
||||
// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization
|
||||
// failures before they happen, or resolves them after they happen. the result
|
||||
// depends sensitively on the translation direction, suggesting that realization
|
||||
// is failing because the engine is having trouble breaking a symmetry
|
||||
// /* TO DO */
|
||||
// the engine's performance on this problem is scale-dependent! with the current
|
||||
// initial conditions, realization fails for any order of imposing the remaining
|
||||
// curvature constraints. scaling everything up by a factor of ten, as done in
|
||||
// the original problem, makes realization succeed reliably. one potentially
|
||||
// relevant difference is that a lot of the numbers in the current initial
|
||||
// conditions are exactly representable as floats, unlike the analogous numbers
|
||||
// in the scaled-up problem. the inexact representations might break the
|
||||
// symmetry that's getting the engine stuck
|
||||
fn load_irisawa_hexlet_assemb(assembly: &Assembly) {
|
||||
let index_range = 1..=6;
|
||||
let colors = [
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
[1.00_f32, 0.25_f32, 0.00_f32],
|
||||
[0.75_f32, 0.75_f32, 0.00_f32],
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
[0.25_f32, 0.00_f32, 1.00_f32]
|
||||
].into_iter();
|
||||
|
||||
// create the spheres
|
||||
let spheres = [
|
||||
Sphere::new(
|
||||
"outer".to_string(),
|
||||
"Outer".to_string(),
|
||||
[0.5_f32, 0.5_f32, 0.5_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.5)
|
||||
),
|
||||
Sphere::new(
|
||||
"sun".to_string(),
|
||||
"Sun".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, -0.75, 0.0, 0.75)
|
||||
),
|
||||
Sphere::new(
|
||||
"moon".to_string(),
|
||||
"Moon".to_string(),
|
||||
[0.25_f32, 0.25_f32, 0.25_f32],
|
||||
engine::sphere(0.0, 0.75, 0.0, 0.75)
|
||||
),
|
||||
].into_iter().chain(
|
||||
index_range.clone().zip(colors).map(
|
||||
|(k, color)| {
|
||||
let ang = (k as f64) * PI/3.0;
|
||||
Sphere::new(
|
||||
format!("chain{k}"),
|
||||
format!("Chain {k}"),
|
||||
color,
|
||||
engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5)
|
||||
)
|
||||
}
|
||||
)
|
||||
);
|
||||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
// put the outer sphere in ghost mode and fix its curvature
|
||||
let outer = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id["outer"].clone()
|
||||
);
|
||||
outer.ghost().set(true);
|
||||
let outer_curvature_regulator = outer.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
outer_curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap()
|
||||
);
|
||||
|
||||
// impose the desired tangencies
|
||||
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
let chain = index_range.map(
|
||||
|k| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
|
||||
)
|
||||
);
|
||||
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
|
||||
for (other_sphere, inversive_distance) in [
|
||||
(outer.clone(), "1"),
|
||||
(sun.clone(), "-1"),
|
||||
(moon.clone(), "-1"),
|
||||
(chain_sphere_next.clone(), "-1")
|
||||
] {
|
||||
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
||||
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
|
||||
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_sun_tangency));
|
||||
|
||||
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
|
||||
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_moon_tangency));
|
||||
}
|
||||
|
||||
// --- chooser ---
|
||||
|
||||
/* DEBUG */
|
||||
#[component]
|
||||
pub fn TestAssemblyChooser() -> View {
|
||||
// create an effect that loads the selected test assembly
|
||||
let assembly_name = create_signal("general".to_string());
|
||||
create_effect(move || {
|
||||
// get name of chosen assembly
|
||||
let name = assembly_name.get_clone();
|
||||
console::log_1(
|
||||
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
|
||||
);
|
||||
|
||||
batch(|| {
|
||||
let state = use_context::<AppState>();
|
||||
let assembly = &state.assembly;
|
||||
|
||||
// pause realization
|
||||
assembly.keep_realized.set(false);
|
||||
|
||||
// clear state
|
||||
assembly.regulators.update(|regs| regs.clear());
|
||||
assembly.elements.update(|elts| elts.clear());
|
||||
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
|
||||
assembly.descent_history.set(DescentHistory::new());
|
||||
state.selection.update(|sel| sel.clear());
|
||||
|
||||
// load assembly
|
||||
match name.as_str() {
|
||||
"general" => load_gen_assemb(assembly),
|
||||
"low-curv" => load_low_curv_assemb(assembly),
|
||||
"pointed" => load_pointed_assemb(assembly),
|
||||
"tridim-icosahedron" => load_tridim_icosahedron_assemb(assembly),
|
||||
"dodeca-packing" => load_dodeca_packing_assemb(assembly),
|
||||
"balanced" => load_balanced_assemb(assembly),
|
||||
"off-center" => load_off_center_assemb(assembly),
|
||||
"radius-ratio" => load_radius_ratio_assemb(assembly),
|
||||
"irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly),
|
||||
_ => ()
|
||||
};
|
||||
|
||||
// resume realization
|
||||
assembly.keep_realized.set(true);
|
||||
});
|
||||
});
|
||||
|
||||
// build the chooser
|
||||
view! {
|
||||
select(bind:value=assembly_name) {
|
||||
option(value="general") { "General" }
|
||||
option(value="low-curv") { "Low-curvature" }
|
||||
option(value="pointed") { "Pointed" }
|
||||
option(value="tridim-icosahedron") { "Tridiminished icosahedron" }
|
||||
option(value="dodeca-packing") { "Dodecahedral packing" }
|
||||
option(value="balanced") { "Balanced" }
|
||||
option(value="off-center") { "Off-center" }
|
||||
option(value="radius-ratio") { "Radius ratio" }
|
||||
option(value="irisawa-hexlet") { "Irisawa hexlet" }
|
||||
option(value="empty") { "Empty" }
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue