dyna3/app-proto/inversive-display/src/main.rs

364 lines
14 KiB
Rust
Raw Normal View History

2024-08-21 13:01:33 -07:00
// based on the WebGL example in the `wasm-bindgen` guide
//
// https://rustwasm.github.io/wasm-bindgen/examples/webgl.html
//
// and this StackOverflow answer by wangdq
//
// https://stackoverflow.com/a/39684775
//
2024-08-21 13:01:33 -07:00
extern crate js_sys;
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
2024-08-21 23:07:14 -07:00
use web_sys::{console, WebGl2RenderingContext, WebGlShader};
2024-08-21 13:01:33 -07:00
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
// load the given data into the vertex input of the given name
fn bind_vertex_attrib(
context: &WebGl2RenderingContext,
index: u32,
size: i32,
data: &[f32]
) {
// create a data buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer().unwrap();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
// load the given data into the buffer. the function `Float32Array::view`
// creates a raw view into our module's `WebAssembly.Memory` buffer.
// allocating more memory will change the buffer, invalidating the view.
// that means we have to make sure we don't allocate any memory until the
// view is dropped
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
// allow the target attribute to be used
context.enable_vertex_attrib_array(index);
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
// above---and bind it to the target attribute
//
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
//
context.vertex_attrib_pointer_with_i32(
index,
size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
2024-08-21 13:01:33 -07:00
fn main() {
// set up a config option that forwards panic messages to `console.error`
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
let ctrl_x = create_signal(0.0);
let ctrl_y = create_signal(0.0);
let opacity = create_signal(0.5);
let layer_threshold = create_signal(0.0);
2024-08-21 13:01:33 -07:00
let display = create_node_ref();
on_mount(move || {
// get the display canvas
let canvas = display
.get::<DomNode>()
.unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// compile and attach the vertex and fragment shaders
2024-08-21 13:01:33 -07:00
let vertex_shader = compile_shader(
&ctx,
WebGl2RenderingContext::VERTEX_SHADER,
r##"#version 300 es
in vec4 position;
2024-08-21 13:01:33 -07:00
void main() {
gl_Position = position;
2024-08-21 13:01:33 -07:00
}
"##,
);
let fragment_shader = compile_shader(
&ctx,
WebGl2RenderingContext::FRAGMENT_SHADER,
r##"#version 300 es
precision highp float;
2024-08-21 13:01:33 -07:00
out vec4 outColor;
2024-08-23 00:16:41 -07:00
// view
uniform vec2 resolution;
uniform float shortdim;
2024-08-23 00:16:41 -07:00
// controls
uniform vec2 ctrl;
2024-08-23 00:16:41 -07:00
uniform float opacity;
uniform int layer_threshold;
2024-08-23 00:16:41 -07:00
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the
// sRGB standard (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity,
// so linear color-vector interpolation corresponds to physical
// light mixing. in sRGB space, the color encoding used by many
// monitors, we use more of the value interval to represent low
// intensities, and less of the interval to represent high
// intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
vecInv sphere(vec3 center, float radius) {
return vecInv(
center / radius,
vec2(
0.5 / radius,
0.5 * (dot(center, center) / radius - radius)
)
);
}
// --- shading ---
struct taggedFrag {
vec4 color;
float depth;
};
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
taggedFrag[2] result;
if (a.depth < b.depth) {
result[0] = a;
result[1] = b;
} else {
result[0] = b;
result[1] = a;
}
return result;
}
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
2024-08-23 00:16:41 -07:00
// the expression for normal needs to be checked. it's
// supposed to give the negative gradient of the lorentz
// product between the impact point vector and the sphere
// vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that
// the result looked good enough for now
2024-08-24 00:08:22 -07:00
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
2024-08-23 00:16:41 -07:00
2024-08-24 00:08:22 -07:00
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return taggedFrag(vec4(illum * base_color, opacity), -pt.z);
}
// --- ray-casting ---
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float scale = -b/(2.*a);
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
float offset = sqrt(1. - adjust);
return vec2(
scale * (1. - offset),
scale * (1. + offset)
);
2024-08-23 00:16:41 -07:00
} else {
// these parameters describe points behind the camera,
// so the corresponding fragments won't be drawn
return vec2(-1., -1.);
2024-08-23 00:16:41 -07:00
}
}
2024-08-21 13:01:33 -07:00
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// initialize two spheres
vecInv v0 = sphere(vec3(0.5, 0.5, -5. + ctrl.x), 1.);
vecInv v1 = sphere(vec3(-0.5, -0.5, -5. + ctrl.y), 1.);
vec3 color0 = vec3(1., 0.214, 0.);
vec3 color1 = vec3(0., 0.214, 1.);
// cast rays through the spheres
vec2 u0 = sphere_cast(v0, dir);
vec2 u1 = sphere_cast(v1, dir);
// shade and depth-sort the impact points
taggedFrag front_hits[2] = sort(
sphere_shading(v0, u0[0] * dir, color0),
sphere_shading(v1, u1[0] * dir, color1)
);
taggedFrag back_hits[2] = sort(
sphere_shading(v0, u0[1] * dir, color0),
sphere_shading(v1, u1[1] * dir, color1)
);
taggedFrag middle_frags[2] = sort(front_hits[1], back_hits[0]);
// finish depth sorting
taggedFrag frags_by_depth[4];
frags_by_depth[0] = front_hits[0];
frags_by_depth[1] = middle_frags[0];
frags_by_depth[2] = middle_frags[1];
frags_by_depth[3] = back_hits[1];
// composite the sphere fragments
2024-08-23 00:16:41 -07:00
vec3 color = vec3(0.);
for (int i = 3; i >= layer_threshold; --i) {
if (frags_by_depth[i].depth > 0.) {
vec4 frag_color = frags_by_depth[i].color;
color = mix(color, frag_color.rgb, frag_color.a);
}
}
outColor = vec4(sRGB(color), 1.);
2024-08-21 13:01:33 -07:00
}
"##,
);
let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader);
ctx.attach_shader(&program, &fragment_shader);
ctx.link_program(&program);
let link_status = ctx
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
ctx.use_program(Some(&program));
2024-08-21 23:07:14 -07:00
// find indices of vertex attributes and uniforms
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let ctrl_loc = ctx.get_uniform_location(&program, "ctrl");
2024-08-23 00:16:41 -07:00
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
2024-08-21 23:07:14 -07:00
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
2024-08-21 13:01:33 -07:00
// set up a repainting routine
create_effect(move || {
2024-08-23 00:16:41 -07:00
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the control parameters
ctx.uniform2f(ctrl_loc.as_ref(), ctrl_x.get() as f32, ctrl_y.get() as f32);
2024-08-23 00:16:41 -07:00
ctx.uniform1f(opacity_loc.as_ref(), opacity.get() as f32);
ctx.uniform1i(layer_threshold_loc.as_ref(), layer_threshold.get() as i32);
2024-08-21 13:01:33 -07:00
// clear the screen and draw the scene
ctx.clear_color(0.0, 0.0, 0.0, 1.0);
ctx.clear(WebGl2RenderingContext::COLOR_BUFFER_BIT);
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
2024-08-21 13:01:33 -07:00
});
});
view! {
div(id="app") {
canvas(ref=display, width="600", height="600")
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=ctrl_x
)
2024-08-21 13:01:33 -07:00
input(
type="range",
min=-1.0,
2024-08-21 13:01:33 -07:00
max=1.0,
step=0.001,
bind:valueAsNumber=ctrl_y
2024-08-21 13:01:33 -07:00
)
2024-08-23 00:16:41 -07:00
input(
type="range",
max=1.0,
step=0.001,
2024-08-23 00:16:41 -07:00
bind:valueAsNumber=opacity
)
input(
type="range",
max=3.0,
step=1.0,
bind:valueAsNumber=layer_threshold
)
2024-08-21 13:01:33 -07:00
}
}
});
}