nanomath/src/generic/relational.js
Glen Whitney 196571ae13
All checks were successful
/ test (pull_request) Successful in 18s
feat: implement complex sqrt
2025-04-28 09:26:35 -07:00

113 lines
4.2 KiB
JavaScript

import {ReturnsAs} from './helpers.js'
import {Returns, ReturnTyping} from '#core/Type.js'
import {Any, Passthru, match, matched} from '#core/TypePatterns.js'
import {boolnum} from '#number/helpers.js'
const {full} = ReturnTyping
export const equal = match([Any, Any], (math, [T, U]) => {
// Finding the correct signature of `indistinguishable` to use for
// testing (approximate) equality is tricky, because T or U might
// need to be converted for the sake of comparison, and some types
// allow tolerances for equality and others don't. So the plan is
// we first look up without tolerances, then we check the config for
// the matching type, and then we look up with tolerances.
let exactChecker
try {
exactChecker = math.indistinguishable.resolve([T, U], full)
} catch { // can't compare, so no way they can be equal
return boolnum(() => false)(math)
}
// Get the type of the first argument to the matching checker:
const ByType = matched(exactChecker.template, math).flat()[0]
// Now see if there are tolerances for that type:
const typeConfig = math.resolve('config', [ByType])
if ('relTol' in typeConfig) {
try {
const {relTol, absTol} = typeConfig
const RT = math.typeOf(relTol)
const AT = math.typeOf(absTol)
const approx = math.indistinguishable.resolve([T, U, RT, AT], full)
return ReturnsAs(
approx, (t, u) => approx(t, u, relTol, absTol))
} catch {} // fall through to case with no tolerances
}
// either no tolerances or no matching signature for indistinguishable
return exactChecker
})
// now that we have `equal` and `exceeds`, pretty much everything else should
// be easy:
export const compare = match([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const gt = math.exceeds.resolve([T, U])
const zero = math.zero(T) // asymmetry here is unfortunate, but we have
// to pick some argument's zero to use, so the first argument seemed
// the most reasonable.
const one = math.one(T)
const negOne = math.negate(one)
if (math.typeOf(negOne) !== T) {
throw new TypeError(
`Cannot 'compare()' type '${T}' that has no negative one.`)
}
const hasnanT = math.hasnan(T)
const hasnanU = math.hasnan(U)
if (!hasnanT && !hasnanU) {
return Returns(T, (t, u) => eq(t, u) ? zero : gt(t, u) ? one : negOne)
}
if (hasnanU && !hasnanT) {
throw new TypeError(
`can't compare type ${T} without NaN and type ${U} with NaN`)
}
const isTnan = hasnanT && math.isnan.resolve([T])
const isUnan = hasnanU && math.isnan.resolve([U])
const nanT = hasnanT && math.nan(T)
return Returns(T, (t, u) => {
if (hasnanT && isTnan(t)) return nanT
if (hasnanU && isUnan(u)) return nanT // not a typo, stay in T
if (eq(t, u)) return zero
return gt(t, u) ? one : negOne
})
})
export const sign = match(Any, (math, T) => {
const zero = math.zero(T)
const comp = math.compare.resolve([T, T])
return ReturnsAs(comp, t => comp(t, zero))
})
export const unequal = match(Passthru, (math, types) => {
const eq = math.equal.resolve(types)
return ReturnsAs(eq, (...args) => !eq(...args))
})
export const larger = match([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([T, U])
return boolnum((t, u) => !eq(t, u) && bigger(t, u))(math)
})
export const isPositive = match(Any, (math, T) => {
const zero = math.zero(T)
const larger = math.larger.resolve([T, T])
return boolnum(t => larger(t, zero))
})
export const largerEq = match([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([T, U])
return ReturnsAs(bigger, (t, u) => eq(t, u) || bigger(t, u))
})
export const smaller = match([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([U, T])
return boolnum((t, u) => !eq(t, u) && bigger(u, t))(math)
})
export const smallerEq = match([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([U, T])
return ReturnsAs(bigger, (t, u) => eq(t, u) || bigger(u, t))
})