feat: Fully define complex cube root #39
6 changed files with 115 additions and 7 deletions
|
|
@ -275,7 +275,8 @@ export class TypeDispatcher {
|
||||||
throw new ReferenceError(`no method or value for key '${key}'`)
|
throw new ReferenceError(`no method or value for key '${key}'`)
|
||||||
}
|
}
|
||||||
if (!Array.isArray(types)) types = [types]
|
if (!Array.isArray(types)) types = [types]
|
||||||
if (types.some(T => T === Unknown)) {
|
// Unknown and union, i.e., OneOf(...), stymie resolution:
|
||||||
|
if (types.some(T => T === Unknown || T.unifies)) {
|
||||||
if (!strategy) return this[key]
|
if (!strategy) return this[key]
|
||||||
const thisTypeOf = whichType(this.types)
|
const thisTypeOf = whichType(this.types)
|
||||||
return (...args) => {
|
return (...args) => {
|
||||||
|
|
|
||||||
|
|
@ -1,18 +1,53 @@
|
||||||
import assert from 'assert'
|
import assert from 'assert'
|
||||||
import math from '#nanomath'
|
import math from '#nanomath'
|
||||||
import {ReturnType, ReturnTyping} from '#core/Type.js'
|
import {ReturnType, ReturnTyping, Unknown} from '#core/Type.js'
|
||||||
|
|
||||||
const {Complex, NumberT} = math.types
|
const {Complex, NumberT} = math.types
|
||||||
|
|
||||||
describe('generic arithmetic', () => {
|
describe('generic arithmetic', () => {
|
||||||
|
const cplx = math.complex
|
||||||
it('squares anything', () => {
|
it('squares anything', () => {
|
||||||
const sq = math.square
|
const sq = math.square
|
||||||
assert.strictEqual(sq(7), 49)
|
assert.strictEqual(sq(7), 49)
|
||||||
assert.strictEqual(ReturnType(math.square.resolve([NumberT])), NumberT)
|
assert.strictEqual(ReturnType(math.square.resolve([NumberT])), NumberT)
|
||||||
assert.deepStrictEqual(sq(math.complex(3, 4)), math.complex(-7, 24))
|
assert.deepStrictEqual(sq(cplx(3, 4)), cplx(-7, 24))
|
||||||
const eyes = math.complex(0, 2)
|
const eyes = cplx(0, 2)
|
||||||
assert.strictEqual(sq(eyes), -4)
|
assert.strictEqual(sq(eyes), -4)
|
||||||
const sqFull = math.square.resolve(Complex(NumberT), ReturnTyping.full)
|
const sqFull = math.square.resolve(Complex(NumberT), ReturnTyping.full)
|
||||||
assert.deepStrictEqual(sqFull(eyes), math.complex(-4, 0))
|
assert.deepStrictEqual(sqFull(eyes), cplx(-4, 0))
|
||||||
|
})
|
||||||
|
|
||||||
|
it('adds up multiple arguments', () => {
|
||||||
|
const add = math.add
|
||||||
|
assert.strictEqual(add(), 0)
|
||||||
|
assert.strictEqual(add(1), 1)
|
||||||
|
assert.deepStrictEqual(add(cplx(2)), cplx(2))
|
||||||
|
assert.deepStrictEqual(
|
||||||
|
ReturnType(add.resolve([Complex(NumberT)])), Complex(NumberT))
|
||||||
|
assert.strictEqual(add(3, 4, 5), 12)
|
||||||
|
assert.deepStrictEqual(add(6, cplx(0, 7), 8), cplx(14, 7))
|
||||||
|
assert.strictEqual(
|
||||||
|
ReturnType(add.resolve([NumberT, Complex(NumberT), NumberT])),
|
||||||
|
Unknown) // loses track of whether it comes out real or complex
|
||||||
|
assert.deepStrictEqual(
|
||||||
|
add(9, cplx(0, 10), cplx(11), cplx(0, -10)), 20)
|
||||||
|
const saveTyping = math.config.returnTyping
|
||||||
|
math.config.returnTyping = ReturnTyping.full
|
||||||
|
assert.strictEqual(
|
||||||
|
ReturnType(add.resolve([NumberT, Complex(NumberT), NumberT])),
|
||||||
|
Complex(NumberT)) // now definite
|
||||||
|
assert.deepStrictEqual(
|
||||||
|
add(9, cplx(0, 10), cplx(11), cplx(0, -10)), cplx(20))
|
||||||
|
math.config.returnTyping = saveTyping
|
||||||
|
})
|
||||||
|
|
||||||
|
it('multiplies multiple arguments', () => {
|
||||||
|
const mult = math.multiply
|
||||||
|
assert.strictEqual(mult(), 1)
|
||||||
|
assert.strictEqual(mult(2), 2)
|
||||||
|
assert.deepStrictEqual(mult(cplx(3)), cplx(3))
|
||||||
|
assert.strictEqual(mult(4, 5, 6), 120)
|
||||||
|
assert.deepStrictEqual(mult(7, cplx(0, 8), 9), cplx(0, 504))
|
||||||
|
assert.deepStrictEqual(mult(10, cplx(0, 1), cplx(0, 2), 3), -60)
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,5 @@
|
||||||
import {ReturnsAs} from './helpers.js'
|
import {iterateBinary, ReturnsAs} from './helpers.js'
|
||||||
|
import {plain} from "#number/helpers.js"
|
||||||
|
|
||||||
import {Returns, ReturnType, ReturnTyping} from '#core/Type.js'
|
import {Returns, ReturnType, ReturnTyping} from '#core/Type.js'
|
||||||
import {match, Any} from '#core/TypePatterns.js'
|
import {match, Any} from '#core/TypePatterns.js'
|
||||||
|
|
@ -18,3 +19,9 @@ export const square = match(Any, (math, T, strategy) => {
|
||||||
const mult = math.multiply.resolve([T, T], strategy)
|
const mult = math.multiply.resolve([T, T], strategy)
|
||||||
return ReturnsAs(mult, t => mult(t, t))
|
return ReturnsAs(mult, t => mult(t, t))
|
||||||
})
|
})
|
||||||
|
|
||||||
|
export const add = iterateBinary('add')
|
||||||
|
add.push(plain(() => 0))
|
||||||
|
|
||||||
|
export const multiply = iterateBinary('multiply')
|
||||||
|
multiply.push(plain(() => 1))
|
||||||
|
|
|
||||||
|
|
@ -1,3 +1,24 @@
|
||||||
import {Returns, ReturnType} from '#core/Type.js'
|
import {Returns, ReturnType} from '#core/Type.js'
|
||||||
|
import {match, Any, Multiple} from '#core/TypePatterns.js'
|
||||||
|
|
||||||
export const ReturnsAs = (g, f) => Returns(ReturnType(g), f)
|
export const ReturnsAs = (g, f) => Returns(ReturnType(g), f)
|
||||||
|
export const iterateBinary = operation => [
|
||||||
|
match(Any, (_math, T) => Returns(T, t => t)),
|
||||||
|
match([Any, Any, Any, Multiple(Any)], (math, [T, U, V, Rest], strategy) => {
|
||||||
|
const op1 = math[operation].resolve([T, U], strategy)
|
||||||
|
const op2 = math[operation].resolve([ReturnType(op1), V])
|
||||||
|
let finalOp = op2
|
||||||
|
let restOps = []
|
||||||
|
for (const Typ of Rest) {
|
||||||
|
finalOp = math[operation].resolve([ReturnType(finalOp), Typ])
|
||||||
|
restOps.push(finalOp)
|
||||||
|
}
|
||||||
|
return ReturnsAs(finalOp, (t, u, v, rest) => {
|
||||||
|
let result = op2(op1(t, u), v)
|
||||||
|
for (let i = 0; i < rest.length; ++i) {
|
||||||
|
result = restOps[i](result, rest[i])
|
||||||
|
}
|
||||||
|
return result
|
||||||
|
})
|
||||||
|
})
|
||||||
|
]
|
||||||
|
|
|
||||||
|
|
@ -30,4 +30,25 @@ describe('number arithmetic', () => {
|
||||||
assert.deepStrictEqual(math.sqrt(-4), math.complex(0, 2))
|
assert.deepStrictEqual(math.sqrt(-4), math.complex(0, 2))
|
||||||
math.config.returnTyping = ReturnTyping.free
|
math.config.returnTyping = ReturnTyping.free
|
||||||
})
|
})
|
||||||
|
it('takes cube root of numbers appropriately', () => {
|
||||||
|
assert(isNaN(math.cbrt(NaN)))
|
||||||
|
assert.strictEqual(math.cbrt(8), 2)
|
||||||
|
assert.strictEqual(math.cbrt(-8), -2)
|
||||||
|
const cbrt10 = Math.cbrt(10)
|
||||||
|
assert.strictEqual(math.cbrt(10), cbrt10)
|
||||||
|
const saveTyping = math.config.returnTyping
|
||||||
|
math.config.returnTyping = ReturnTyping.full
|
||||||
|
assert(isNaN(math.cbrt(NaN)))
|
||||||
|
const cbrtIm = Math.sqrt(3) / 2
|
||||||
|
const cplx = math.complex
|
||||||
|
const rt8 = math.cbrt(8)
|
||||||
|
assert.deepStrictEqual(
|
||||||
|
rt8, [cplx(2), cplx(-1, 2 * cbrtIm), cplx(-1, -2 * cbrtIm)])
|
||||||
|
assert(math.equal(math.multiply.apply(null, rt8), cplx(8)))
|
||||||
|
assert.deepStrictEqual(
|
||||||
|
math.cbrt(10),
|
||||||
|
[cplx(cbrt10),
|
||||||
|
cplx(-cbrt10 / 2, cbrt10 * cbrtIm),
|
||||||
|
cplx(-cbrt10 / 2, -cbrt10 * cbrtIm)])
|
||||||
|
})
|
||||||
})
|
})
|
||||||
|
|
|
||||||
|
|
@ -3,6 +3,7 @@ import {NumberT} from './NumberT.js'
|
||||||
import {OneOf, Returns, ReturnTyping, Undefined} from '#core/Type.js'
|
import {OneOf, Returns, ReturnTyping, Undefined} from '#core/Type.js'
|
||||||
import {match} from '#core/TypePatterns.js'
|
import {match} from '#core/TypePatterns.js'
|
||||||
import {Complex} from '#complex/Complex.js'
|
import {Complex} from '#complex/Complex.js'
|
||||||
|
import {ReturnsAs} from '#generic/helpers.js'
|
||||||
|
|
||||||
const {conservative, full} = ReturnTyping
|
const {conservative, full} = ReturnTyping
|
||||||
|
|
||||||
|
|
@ -15,7 +16,7 @@ export const add = [
|
||||||
match([NumberT, Undefined], Returns(NumberT, () => NaN))
|
match([NumberT, Undefined], Returns(NumberT, () => NaN))
|
||||||
]
|
]
|
||||||
export const divide = plain((a, b) => a / b)
|
export const divide = plain((a, b) => a / b)
|
||||||
export const cbrt = plain(a => {
|
const numberCbrt = a => {
|
||||||
if (a === 0) return a
|
if (a === 0) return a
|
||||||
const negate = a < 0
|
const negate = a < 0
|
||||||
if (negate) a = -a
|
if (negate) a = -a
|
||||||
|
|
@ -25,7 +26,29 @@ export const cbrt = plain(a => {
|
||||||
result = (a / (result * result) + (2 * result)) / 3
|
result = (a / (result * result) + (2 * result)) / 3
|
||||||
}
|
}
|
||||||
return negate ? -result : result
|
return negate ? -result : result
|
||||||
|
}
|
||||||
|
const cbrtIm = Math.sqrt(3) / 2
|
||||||
|
export const cbrt = match(NumberT, (math, _N, strategy) => {
|
||||||
|
if (strategy === full && math.types.Complex && math.types.Vector) {
|
||||||
|
// return vector of all three complex roots, real one first
|
||||||
|
const C = Complex(NumberT)
|
||||||
|
const vec = math.vector.resolve([C, C, C])
|
||||||
|
const promote = math.complex.resolve([NumberT])
|
||||||
|
const cplx = math.complex.resolve([NumberT, NumberT])
|
||||||
|
return ReturnsAs(vec, x => {
|
||||||
|
const realroot = numberCbrt(x)
|
||||||
|
if (!isFinite(realroot)) {
|
||||||
|
const full = cplx(realroot, realroot)
|
||||||
|
return(promote(realroot), full, full)
|
||||||
|
}
|
||||||
|
return vec(promote(realroot),
|
||||||
|
cplx(-realroot / 2, realroot * cbrtIm),
|
||||||
|
cplx(-realroot / 2, -realroot * cbrtIm))
|
||||||
|
})
|
||||||
|
}
|
||||||
|
return Returns(NumberT, numberCbrt)
|
||||||
})
|
})
|
||||||
|
|
||||||
export const invert = plain(a => 1/a)
|
export const invert = plain(a => 1/a)
|
||||||
export const multiply = [
|
export const multiply = [
|
||||||
plain((a, b) => a * b),
|
plain((a, b) => a * b),
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue