feat: add cbrt for complex numbers and quaternions, returning three values
All checks were successful
/ test (pull_request) Successful in 19s

This commit is contained in:
Glen Whitney 2025-12-12 23:29:49 -08:00
parent ad0e804e94
commit e24b81a206
4 changed files with 79 additions and 14 deletions

View file

@ -132,4 +132,15 @@ describe('complex arithmetic operations', () => {
assert.deepStrictEqual( assert.deepStrictEqual(
sub(cplx(z,z), cplx(10,20)), cplx(cplx(-7, 4), cplx(-17, 4))) sub(cplx(z,z), cplx(10,20)), cplx(cplx(-7, 4), cplx(-17, 4)))
}) })
it('cube roots complex numbers and quaternions', () => {
assert(math.equal(math.cbrt(cplx(0, 8))[0], cplx(Math.sqrt(3), 1)))
assert.deepStrictEqual(
math.cbrt(cplx(2, 3)),
[cplx(1.4518566183526649, 0.49340353410400467),
cplx(-1.1532283040274218, 1.0106429470939742),
cplx(-0.29862831432524256, -1.5040464811979786)])
const quat = cplx(cplx(1, 2), cplx(2, 1))
const root = math.cbrt(quat)[0]
assert(math.equal(math.multiply(root, root, root), quat))
})
}) })

View file

@ -19,6 +19,13 @@ describe('complex type operations', () => {
assert.strictEqual(math.arg(cplx(1, Math.sqrt(3))), Math.PI/3) assert.strictEqual(math.arg(cplx(1, Math.sqrt(3))), Math.PI/3)
assert.strictEqual(math.arg(cplx(true, true)), Math.PI/4) assert.strictEqual(math.arg(cplx(true, true)), Math.PI/4)
}) })
it('calculates the real parts of complex numbers and quaternions', () => {
assert.strictEqual(math.re(cplx(2, -3)), 2)
assert.strictEqual(math.re(cplx(cplx(0.5), cplx(8, -7))), 0.5)
})
it('calculates the argument of a quaternion', () => {
assert(math.equal(math.arg(cplx(cplx(1, 1), cplx(1, 1))), Math.acos(0.5)))
})
it('detects associates of a complex number', () => { it('detects associates of a complex number', () => {
const z = cplx(3, 4) const z = cplx(3, 4)
const assoc = math.associate const assoc = math.associate

View file

@ -4,6 +4,7 @@ import {ResolutionError} from '#core/helpers.js'
import {Returns, ReturnType, ReturnTyping} from '#core/Type.js' import {Returns, ReturnType, ReturnTyping} from '#core/Type.js'
import {match} from '#core/TypePatterns.js' import {match} from '#core/TypePatterns.js'
import {ReturnsAs} from '#generic/helpers.js' import {ReturnsAs} from '#generic/helpers.js'
import {NumberT} from '#number/NumberT.js'
const {conservative, full, free} = ReturnTyping const {conservative, full, free} = ReturnTyping
@ -141,4 +142,44 @@ export const sqrt = match(Complex, (math, C, strategy) => {
return ReturnsAs(prune, z => prune(sqrtImp(z))) return ReturnsAs(prune, z => prune(sqrtImp(z)))
}) })
const TAU3 = 2 * Math.PI / 3
export const cbrt = match(Complex, (math, C) => {
const arg = math.arg.resolve(C)
const divArg = math.divide.resolve([ReturnType(arg), NumberT])
const absC = math.abs.resolve(C)
const cbrtR = math.cbrt.resolve(ReturnType(absC), conservative)
const im = math.im.resolve(C)
const absIm = math.abs.resolve(ReturnType(im))
const divIm = math.divide.resolve([ReturnType(im), ReturnType(absIm)])
// TODO: replace with nanomath cos and sin when available
// const cos = math.cos.resolve(ReturnType(divArg))
// const CosType = ReturnType(cos) // and similarly for sin
const cos = Math.cos
const CosType = NumberT
const sin = Math.sin
const SinType = NumberT
const mulIm = math.multiply.resolve([ReturnType(divIm), SinType])
const addUp = math.add.resolve([CosType, ReturnType(mulIm)])
const addAngle = math.add.resolve([ReturnType(divArg), math.typeOf(TAU3)])
const subAngle = math.subtract.resolve(
[ReturnType(divArg), math.typeOf(TAU3)])
const scale = math.multiply.resolve([ReturnType(cbrtR), ReturnType(addUp)])
const Cout = ReturnType(scale)
const vec = math.vector.resolve([Cout, Cout, Cout])
return ReturnsAs(vec, z => {
const arg3 = divArg(arg(z), 3)
const mag = absC(z)
const r = cbrtR(mag)
const imz = im(z)
const unit = divIm(imz, absIm(imz))
// At this point, z = mag*(cos(arg) + unit * sin(arg))
// so one cube root is r*(cos(arg3) + unit * sin(arg3))
// and we get the other two by adjusting arg3 by +- TAU3
const cus = theta => scale(r, addUp(cos(theta), mulIm(unit, sin(theta))))
return vec(
cus(arg3), cus(addAngle(arg3, TAU3)), cus(subAngle(arg3, TAU3)))
})
})
export const subtract = promoteBinary('subtract') export const subtract = promoteBinary('subtract')

View file

@ -31,20 +31,26 @@ export const complex = [
}) })
] ]
export const arg = // [ // enable when we have atan2 in mathjs export const arg = match(Complex, (math, C) => {
// match(Complex, (math, C) => { const re = math.re.resolve(C)
// const re = math.re.resolve(C) const atan2 = Math.atan2
// const R = ReturnType(re) const ArgType = NumberT
// const im = math.im.resolve(C) if (ReturnType(re) === C.Component) {
// const abs = math.abs.resolve(C) // "plain" Complex (not nested, i.e. not quaternions)
// const atan2 = math.atan2.resolve([R, R], conservative) // FIXME: use math.atan2 once available
// return Returns(R, z => atan2(abs(im(z)), re(z))) // const atan2 = math.atan2.resolve(
// }), // note always between 0 and tau/2; need to use in conjunction // [C.Component, C.Component], conservative)
// // with a complex unit function that gives you the proper // const argType = ReturnType(atan2)
// // imaginary unit, ±i in the simple complex case, to restore the return Returns(ArgType, z => atan2(z.im, z.re))
// // full circle of values for the direction of a complex number }
match(Complex(NumberT), Returns(NumberT, z => Math.atan2(z.im, z.re))) const im = math.im.resolve(C)
//] const abs = math.abs.resolve(ReturnType(im))
// FIXME: use math.atan2 once available
// const atan2 = math.atan2.resolve(
// [ReturnType(abs), ReturnType(re)], conservative)
// const ArgType = ReturnType(atan2)
return Returns(ArgType, z => atan2(abs(im(z)), re(z)))
})
/* Returns true if w is z multiplied by a complex unit */ /* Returns true if w is z multiplied by a complex unit */
export const associate = match( export const associate = match(