feat: Implement Vector type (#28)
All checks were successful
/ test (push) Successful in 18s

The Vector type is simply a generic type for built-in JavaScript Arrays. The parameter type is the type of all of the entries of the Array. The Vector type also supports inhomogeneous arrays by using the special type `Unknown` as the argument type, but note that when computing with inhomogeneous arrays, method dispatch must be performed separately for every entry in a calculation, making all operations considerably slower than on homogeneous Vector instances.

Note also that arithmetic operations on nested Vectors, e.g. `Vector(Vector(NumberT))` are defined so as to interpret such entities as ordinary matrices, represented in row-major format (i.e., the component `Vector(NumberT)` items of such an entity are the _rows_ of the matrix.

Reviewed-on: #28
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
This commit is contained in:
Glen Whitney 2025-05-07 00:03:49 +00:00 committed by Glen Whitney
parent 0765ba7202
commit 95d81d0338
47 changed files with 1204 additions and 122 deletions

48
src/vector/Vector.js Normal file
View file

@ -0,0 +1,48 @@
import {Type, Unknown} from '#core/Type.js'
const isVector = v => Array.isArray(v)
export const Vector = new Type(isVector, {
specialize(CompType) {
const compTest = CompType.test
const specTest = v => isVector(v) && v.every(compTest)
const typeName = `Vector(${CompType})`
if (CompType.concrete) {
const typeOptions = {typeName}
if ('zero' in CompType) typeOptions.zero = [CompType.zero]
const vectorCompType = new Type(specTest, typeOptions)
vectorCompType.Component = CompType
vectorCompType.vectorDepth = (CompType.vectorDepth ?? 0) + 1
return vectorCompType
}
// Wrapping a generic type in Vector
return new Type(specTest, {
typeName,
specialize: (...args) => this.specialize(CompType.specialize(...args)),
specializesTo: VT => this.specializesTo(VT)
&& CompType.specializesTo(VT.Component),
refine: (v, typer) => {
if (!v.length) {
throw new RangeError(
`no way to refine ${typeName} on an empty vector`)
}
const eltTypes = v.map(elt => CompType.refine(elt, typer))
const newCompType = eltTypes[0]
if (eltTypes.some(T => T !== newCompType)) {
throw new TypeError(
`can't refine ${typeName} to ${v}; `
+ `not all entries have type ${newCompType}`)
}
return this.specialize(newCompType)
}
})
},
specializesTo: VT => 'vectorDepth' in VT && VT.vectorDepth > 0,
refine(v, typer) {
if (!v.length) return this.specialize(Unknown) // what else could we do?
const eltTypes = v.map(elt => typer(elt))
let compType = eltTypes[0]
if (eltTypes.some(T => T !== compType)) compType = Unknown
return this.specialize(compType)
}
})

View file

@ -0,0 +1,35 @@
import assert from 'assert'
import {Vector} from '../Vector.js'
import {Unknown} from '#core/Type.js'
import math from '#nanomath'
describe('Vector Type', () => {
it('correctly recognizes vectors', () => {
assert(Vector.test([3, 4]))
assert(!Vector.test({re: 3, im: 4}))
})
it('can fully type vectors', () => {
const {BooleanT, Complex, NumberT} = math.types
const typ = math.typeOf
const cplx = math.complex
assert.strictEqual(typ([3, 4]), Vector(NumberT))
assert.strictEqual(typ([true, false]), Vector(BooleanT))
assert.strictEqual(typ([3, false]), Vector(Unknown))
assert.strictEqual(typ([cplx(3, 4), cplx(5)]), Vector(Complex(NumberT)))
assert.strictEqual(typ([[3, 4], [5]]), Vector(Vector(NumberT)))
})
it('can refine when nested', () => {
const {Complex, NumberT} = math.types
const cplx = math.complex
const VecComplex = Vector(Complex)
const vcEx = [cplx(3, 4), cplx(5)]
assert(VecComplex.test(vcEx))
const vcType = VecComplex.refine(vcEx, math.typeOf)
assert.strictEqual(vcType, Vector(Complex(NumberT)))
const CplxVec = Complex(Vector)
const cvEx = cplx([3,4], [5, 0])
assert(CplxVec.test(cvEx))
const cvType = CplxVec.refine(cvEx, math.typeOf)
assert.strictEqual(cvType, Complex(Vector(NumberT)))
})
})

View file

@ -0,0 +1,82 @@
import assert from 'assert'
import math from '#nanomath'
describe('Vector arithmetic functions', () => {
const cplx = math.complex
const cV = [cplx(3, 4), cplx(4, -3), cplx(-3, -4)]
it('distributes abs elementwise', () => {
const abs = math.abs
assert.deepStrictEqual(abs([-3, 4, -5]), [3, 4, 5])
assert.deepStrictEqual(abs(cV), [5, 5, 5])
assert.deepStrictEqual(abs([true, -4, cplx(4, 3)]), [1, 4, 5])
})
it('computes the norm of a vector or matrix', () => {
const norm = math.norm
assert.strictEqual(norm([-3, 4, -5]), Math.sqrt(50))
assert.strictEqual(norm([[1, 2], [4, 2]]), 5)
assert.strictEqual(norm(cV), Math.sqrt(75))
})
it('adds vectors and matrices', () => {
const add = math.add
assert.deepStrictEqual(add([-3, 4, -5], [8, 0, 2]), [5, 4, -3])
assert.deepStrictEqual(
add([[1, 2], [4, 2]], [[0, -1], [3, -4]]), [[1, 1], [7, -2]])
assert.deepStrictEqual(
add([[1, 2], [4, 2]], [0, -1]), [[1, 1], [4, 1]])
})
it('(pseudo)inverts matrices', () => {
const inv = math.invert
// inverses
assert.deepStrictEqual(inv([3, 4, 5]), [3/50, 2/25, 1/10])
assert.deepStrictEqual(inv([[4]]), [[0.25]])
assert.deepStrictEqual(inv([[5, 2], [-7, -3]]), [[3, 2], [-7, -5]])
assert(math.equal(
inv([[3, 0, 2], [2, 1, 0], [1, 4, 2]]),
[[1/10, 2/5, -1/10], [-1/5, 1/5, 1/5], [7/20, -3/5, 3/20]]))
// pseudoinverses
assert.deepStrictEqual(inv([[1, 0], [1, 0]]), [[1/2, 1/2], [0, 0]])
assert.deepStrictEqual(
inv([[1, 0], [0, 1], [0, 1]]), [[1, 0, 0], [0, 1/2, 1/2]])
assert.deepStrictEqual(
inv([[1, 0, 0, 0, 2],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0],
[0, 4, 0, 0, 0]]),
[[1/5, 0, 0, 0],
[ 0, 0, 0, 1/4],
[ 0, 1/3, 0, 0],
[ 0, 0, 0, 0],
[2/5, 0, 0, 0]])
})
it('multiplies vectors and matrices', () => {
const mult = math.multiply
const pyth = [3, 4, 5]
assert.deepStrictEqual(mult(pyth, 2), [6, 8, 10])
assert.deepStrictEqual(mult(-3, pyth), [-9, -12, -15])
assert.strictEqual(mult(pyth, pyth), 50)
const mat23 = [[1, 2, 3], [-3, -2, -1]]
assert.deepStrictEqual(mult(mat23, pyth), [26, -22])
const mat32 = math.transpose(mat23)
assert.deepStrictEqual(mult(pyth, mat32), [26, -22])
assert.deepStrictEqual(mult(mat23, mat32), [[14, -10], [-10, 14]])
assert.deepStrictEqual(
mult(mat32, [[1, 2], [3, 4]]),
[[-8, -10], [-4, -4], [0, 2]])
assert(math.equal(
mult([[3, 0, 2], [2, 1, 0], [1, 4, 2]],
[[1/10, 2/5, -1/10], [-1/5, 1/5, 1/5], [7/20, -3/5, 3/20]]),
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]))
})
it('negates a vector', () => {
assert.deepStrictEqual(math.negate([-3, 4, -5]), [3, -4, 5])
})
it('subtracts vectors', () => {
assert.deepStrictEqual(math.subtract([-3, 4, -5], [8, 0, 2]), [-11, 4, -7])
})
it('computes the sum of a vector', () => {
const sum = math.sum
assert.strictEqual(sum([-3, 4, -5]), -4)
assert.deepStrictEqual(sum(cV), cplx(4, -3))
assert.strictEqual(sum([4, true, -2]), 3)
})
})

View file

@ -0,0 +1,47 @@
import assert from 'assert'
import math from '#nanomath'
const t = true
const f = false
describe('Vector relational functions', () => {
it('can test two vectors for deep equality', () => {
const dEq = math.deepEqual
const pyth = [3, 4, 5]
assert.strictEqual(dEq(pyth, [3, 4, 5]), t)
assert.strictEqual(dEq(pyth, [3, 4, 6]), f)
assert.strictEqual(dEq(pyth, [3, 4, [5]]), f)
assert.strictEqual(dEq(3, 3 + 1e-13), t)
assert.strictEqual(dEq(pyth, [3+1e-13, 4-1e-13, 5]), t)
assert.strictEqual(dEq([pyth, pyth], [pyth, [3, 4, 5]]), t)
assert.strictEqual(dEq([3], 3), f)
})
it('performs equal elementwise', () => {
const eq = math.equal
const pyth = [3, 4, 5]
assert.deepStrictEqual(eq(pyth, 4), [f, t, f])
assert.deepStrictEqual(eq(5, pyth), [f, f, t])
assert.deepStrictEqual(eq(pyth, pyth), [t, t, t])
assert.deepStrictEqual(eq(pyth, [3]), [t, f, f])
assert.deepStrictEqual(eq([4 + 1e-14], pyth), [f, t, f])
assert.deepStrictEqual(eq(pyth, [3, 4]), [t, t, f])
assert.deepStrictEqual(eq([3, 2], pyth), [t, f, f])
assert.deepStrictEqual(eq([pyth, pyth], [3, 4]), [[t, f, f], [f, t, f]])
assert.deepStrictEqual(
eq([pyth, pyth], [[5], pyth]), [[f, f, t], [t, t, t]])
assert.deepStrictEqual(
eq([[1, 2], [3, 4]], [[1, 3], [2, 4]]), [[t, f], [f, t]])
})
it('performs order comparisons elementwise', () => {
const pyth = [3, 4, 5]
const ans = [-1, 0, 1]
const powers = [2, 4, 8]
assert.deepStrictEqual(math.compare(pyth, [5, 4, 3]), ans)
assert.deepStrictEqual(math.sign([-Infinity, 0, 3]), ans)
assert.deepStrictEqual(math.unequal(pyth, [5, 4 + 1e-14, 5]), [t, f, f])
assert.deepStrictEqual(math.larger(pyth, powers), [t, f, f])
assert.deepStrictEqual(math.isPositive(ans), [f, f, t])
assert.deepStrictEqual(math.largerEq(pyth, powers), [t, t, f])
assert.deepStrictEqual(math.smaller(pyth, powers), [f, f, t])
assert.deepStrictEqual(math.smallerEq(pyth, powers), [f, t, t])
})
})

View file

@ -0,0 +1,45 @@
import assert from 'assert'
import {ReturnType, Unknown} from '#core/Type.js'
import math from '#nanomath'
describe('Vector type functions', () => {
it('can construct a vector', () => {
const vec = math.vector
const {BooleanT, NumberT, Vector} = math.types
assert.deepStrictEqual(vec(3, 4, 5), [3, 4, 5])
assert.strictEqual(
ReturnType(vec.resolve([NumberT, NumberT, NumberT])),
Vector(NumberT))
assert.deepStrictEqual(vec(3, true), [3, true])
assert.strictEqual(
ReturnType(vec.resolve([NumberT, BooleanT])),
Vector(Unknown))
})
it('can transpose vectors and matrices', () => {
const tsp = math.transpose
assert.deepStrictEqual(tsp([3, 4, 5]), [[3], [4], [5]])
assert.deepStrictEqual(tsp([[1, 2], [3, 4]]), [[1, 3], [2, 4]])
assert.deepStrictEqual(
tsp([[1, 2, 3], [4, 5, 6]]), [[1, 4], [2, 5], [3, 6]])
})
it('can take adjoint (conjugate transpose) of a matrix', () => {
const cx = math.complex
assert.deepStrictEqual(
math.adjoint([[cx(1, 1), cx(2, 2)], [cx(3, 3), cx(4, 4)]]),
[[cx(1, -1), cx(3, -3)], [cx(2, -2), cx(4, -4)]])
})
it('generates identity from an example matrix or a number of rows', () => {
const id = math.identity
const cx = math.complex
assert.deepStrictEqual(id(2), [[1, 0], [0, 1]])
assert.deepStrictEqual(id(cx(2)), [[cx(1), cx(0)], [cx(0), cx(1)]])
assert.deepStrictEqual(
id([[1, 2, 3]]),
[[1, 0 , 0], [0, 1, 0], [0, 0, 1]])
})
it('takes the determinant of a matrix', () => {
assert.strictEqual(
math.determinant([[6, 1, 1], [4, -2, 5], [2, 8, 7]]),
-306)
})
})

View file

@ -0,0 +1,41 @@
import assert from 'assert'
import math from '#nanomath'
describe('Vector utility functions', () => {
it('can clone a vector', () => {
const subj1 = [3, 4]
const clone1 = math.clone(subj1)
assert.deepStrictEqual(clone1, subj1)
assert(clone1 !== subj1)
const subj2 = [3, false]
const clone2 = math.clone(subj2)
assert.deepStrictEqual(clone2, subj2)
assert(clone2 !== subj2)
const subj3 = [[3, 4], [2, 5]]
const clone3 = math.clone(subj3)
assert.deepStrictEqual(clone3, subj3)
assert(clone3 !== subj3)
assert(clone3[0] !== subj3[0])
assert(clone3[1] !== subj3[1])
})
it('performs utilities elementwise', () => {
const cplx = math.complex
const sink = math.vector(
NaN, -Infinity, 7,
cplx(3, 4), cplx(3.5, -2.5), cplx(2.2), cplx(cplx(3, 4))
)
const t = true, f = false
assert.deepStrictEqual(math.isnan(sink), [t, f, f, f, f, f, f])
assert.deepStrictEqual(math.isfinite(sink), [f, f, t, t, t, t, t])
assert.deepStrictEqual(math.isInteger(sink), [f, f, t, t, f, f, t])
assert.deepStrictEqual(math.isReal(sink), [t, t, t, f, f, t, f])
assert.deepStrictEqual(math.nonImaginary(sink), [t, t, t, f, f, t, t])
assert.deepStrictEqual(math.re(sink), [NaN, -Infinity, 7, 3, 3.5, 2.2, 3])
assert.deepStrictEqual(
math.im(sink),
[0, 0, 0, cplx(0, 4), cplx(0, -2.5), cplx(0, 0), cplx(cplx(0, 4))])
})
})

7
src/vector/all.js Normal file
View file

@ -0,0 +1,7 @@
export * as typeDefinition from './Vector.js'
export * as arithmetic from './arithmetic.js'
export * as logical from './logical.js'
export * as relational from './relational.js'
export * as type from './type.js'
export * as utilities from './utils.js'

266
src/vector/arithmetic.js Normal file
View file

@ -0,0 +1,266 @@
import {
distributeFirst, distributeSecond, promoteBinary, promoteUnary
} from './helpers.js'
import {Vector} from './Vector.js'
import {Returns, ReturnType} from '#core/Type.js'
import {match} from '#core/TypePatterns.js'
import {ReturnsAs} from '#generic/helpers.js'
export const normsq = match(Vector, (math, V) => {
const compNormsq = math.normsq.resolve(V.Component)
const sum = math.sum.resolve(Vector(ReturnType(compNormsq)))
return ReturnsAs(sum, v => sum(v.map(compNormsq)))
})
// abs and norm differ only on Vector (and perhaps other collections) --
// norm computes overall by the generic formula, whereas abs distributes
// elementwise:
export const abs = promoteUnary('abs')
export const add = promoteBinary('add')
export const dotMultiply = promoteBinary('multiply')
export const invert = match(Vector, (math, V, strategy) => {
if (V.vectorDepth > 2) {
throw new TypeError(
'invert not implemented for arrays of dimension > 2')
}
const normsq = math.normsq.resolve(V, strategy)
const NormT = ReturnType(normsq)
const zNorm = math.zero(NormT)
const isRealZ = math.isZero.resolve(NormT, strategy)
if (V.vectorDepth === 1) {
const invNorm = math.invert.resolve(NormT, strategy)
const scalarMult = math.multiply.resolve(
[V, ReturnType(invNorm)], strategy)
return ReturnsAs(scalarMult, v => {
const nsq = normsq(v)
if (isRealZ(nsq)) return Array(v.length).fill(zNorm)
return scalarMult(v, invNorm(nsq))
})
}
// usual matrix situation, want to find a matrix whose product with v
// is the identity, or as close as we can get to that if the rank is
// deficient. We use the Moore-Penrose pseudoinverse.
const clone = math.clone.resolve(V, strategy)
const VComp = V.Component
const Elt = VComp.Component
const invElt = math.invert.resolve(Elt, strategy)
const det = math.determinant.resolve(V, strategy)
const neg = math.negate.resolve(Elt, strategy)
const multMM = math.multiply.resolve([V, V], strategy)
const multMS = math.multiply.resolve([V, ReturnType(invElt)], strategy)
const multVS = math.multiply.resolve([VComp, ReturnType(invElt)], strategy)
const multSS = math.multiply.resolve([Elt, Elt], strategy)
const sub = math.subtract.resolve([Elt, Elt], strategy)
const id = math.identity.resolve(V, strategy)
const abs = math.abs.resolve(Elt, strategy)
const gt = math.larger.resolve([NormT, NormT], strategy)
const isEltZ = math.isZero.resolve(Elt, strategy)
const zElt = math.zero(Elt)
const adj = math.adjoint.resolve(V, strategy)
const methods = {
invElt, det, isRealZ, neg, multMM, multMS, multVS, multSS,
id, abs, isEltZ, zElt, gt, sub, adj, clone
}
if (ReturnType(abs) !== NormT) {
throw new TypeError('type inconsistency in matrix invert')
}
return Returns(V, m => {
const rows = m.length
const cols = m[0].length
const nsq = normsq(m)
if (isRealZ(nsq)) { // all-zero matrix
const retval = []
for (let ix = 0; ix < cols; ++ix) {
retval.push(Array(rows).fill(zNorm))
}
return retval
}
if (rows == cols) {
// the inv helper will return falsy if not invertible
const retval = inv(m, rows, methods)
if (retval) return retval
}
return pinv(m, rows, cols, methods)
})
})
// Returns the inverse of a rows×rows matrix or false if not invertible
// Note: destroys m in the inversion process.
function inv(
origm,
rows,
{
invElt, det, isRealZ, neg, multMS, multVS, multSS,
id, abs, isEltZ, zElt, gt, sub, clone
}
) {
switch (rows) {
case 1: return [[invElt(origm[0][0])]]
case 2: {
const dt = det(origm)
if (isRealZ(dt)) return false
const divisor = invElt(dt)
const [[a, b], [c, d]] = origm
return multMS([[d, neg(b)], [neg(c), a]], divisor)
}
default: { // Gauss-Jordan elimination
const m = clone(origm)
const B = id(m)
const cols = rows
// Loop over columns, performing row reductions:
for (let c = 0; c < cols; ++c) {
// Pivot: Find row r that has the largest entry in column c, and
// swap row c and r:
let colMax = abs(m[c][c])
let rMax = c
for (let r = c + 1; r < rows; ++r) {
const mag = abs(m[r][c])
if (gt(mag, colMax)) {
colMax = mag
rMax = r
}
}
if (isRealZ(colMax)) return false
if (rMax !== c) {
[m[c], m[rMax], B[c], B[rMax]]
= [m[rMax], m[c], B[rMax], B[c]]
}
// Normalize the cth row:
const normalizer = invElt(m[c][c])
const mc = multVS(m[c], normalizer)
m[c] = mc
const Bc = multVS(B[c], normalizer)
B[c] = Bc
// Eliminate nonzero values on other rows at column c
for (let r = 0; r < rows; ++r) {
if (r === c) continue
const mr = m[r]
const Br = B[r]
const mrc = mr[c]
if (!isEltZ(mr[c])) {
// Subtract Arc times row c from row r to eliminate A[r][c]
mr[c] = zElt
for (let s = c + 1; s < cols; ++s) {
mr[s] = sub(mr[s], multSS(mrc, mc[s]))
}
for (let s = 0; s < cols; ++s) {
Br[s] = sub(Br[s], multSS(mrc, Bc[s]))
}
}
}
}
return B
}}
}
// Calculates Moore-Penrose pseudoinverse
// uses rank factorization per mathjs; SVD appears to be considered better
// but not worth the effort to implement for this prototype
function pinv(m, rows, cols, methods) {
const {C, F} = rankFactorization(m, rows, cols, methods)
const {multMM, adj} = methods
const Cstar = adj(C)
const Cpinv = multMM(inv(multMM(Cstar, C), Cstar.length, methods), Cstar)
const Fstar = adj(F)
const Fpinv = multMM(Fstar, inv(multMM(F, Fstar), F.length, methods))
return multMM(Fpinv, Cpinv)
}
// warning: destroys m in computing the row-reduced echelon form
// TODO: this code should be merged with inv to the extent possible. It's
// a very similar process.
function rref(origm, rows, cols, methods) {
const {isEltZ, invElt, multVS, zElt, sub, multSS, clone} = methods
const m = clone(origm)
let lead = -1
for (let r = 0; r < rows && ++lead < cols; ++r) {
if (cols <= lead) return m
let i = r
while (isEltZ(m[i][lead])) {
if (++i === rows) {
i = r
if (++lead === cols) return m
}
}
if (i !== r) [m[i], m[r]] = [m[r], m[i]]
let normalizer = invElt(m[r][lead])
const mr = multVS(m[r], normalizer)
m[r] = mr
for (let i = 0; i < rows; ++i) {
if (i === r) continue
const mi = m[i]
const toRemove = mi[lead]
mi[lead] = zElt
for (let j = lead + 1; j < cols; ++j) {
mi[j] = sub(mi[j], multSS(toRemove, mr[j]))
}
}
}
return m
}
function rankFactorization(m, rows, cols, methods) {
const RREF = rref(m, rows, cols, methods)
const {isEltZ} = methods
const rankRows = RREF.map(row => row.some(elt => !isEltZ(elt)))
const C = m.map(row => row.filter((_, j) => j < rows && rankRows[j]))
const F = RREF.filter((_, i) => rankRows[i])
return {C, F}
}
export const multiply = [
distributeFirst('multiply'),
distributeSecond('multiply'),
match([Vector, Vector], (math, [V, W], strategy) => {
const VComp = V.Component
if (W.vectorDepth === 1) {
if (V.vectorDepth === 1) {
const eltWise = math.dotMultiply.resolve([V, W], strategy)
const sum = math.sum.resolve(ReturnType(eltWise))
return ReturnsAs(sum, (v, w) => sum(eltWise(v, w)))
}
const compMult = math.multiply.resolve([VComp, W], strategy)
return ReturnsAs(
Vector(ReturnType(compMult)),
(v, w) => v.map(f => compMult(f, w)))
}
const transpose = math.transpose.resolve(W, strategy)
const wrapV = V.vectorDepth === 1
const RowV = wrapV ? V : VComp
const rowMult = math.multiply.resolve([RowV, W.Component], strategy)
let RetType = Vector(ReturnType(rowMult))
if (!wrapV) RetType = Vector(RetType)
return ReturnsAs(RetType, (v, w) => {
if (wrapV) v = [v]
w = transpose(w)
let retval = v.map(vrow => w.map(wcol => rowMult(vrow, wcol)))
if (wrapV) retval = retval[0]
return retval
})
})
]
export const negate = promoteUnary('negate')
export const subtract = promoteBinary('subtract')
export const sum = match(Vector, (math, V) => {
const add = math.add.resolve([V.Component, V.Component])
const haszero = math.haszero(V.Component)
const zero = haszero ? math.zero(V.Component) : undefined
return ReturnsAs(add, v => {
if (v.length === 0) {
if (haszero) return zero
throw new TypeError(`Can't sum empty ${V}: no zero element`)
}
let ix = 0
let retval = v[ix]
while (++ix < v.length) retval = add(retval, v[ix])
return retval
})
})

70
src/vector/helpers.js Normal file
View file

@ -0,0 +1,70 @@
import {Vector} from './Vector.js'
import {Returns, ReturnType, Undefined} from '#core/Type.js'
import {Any, match} from '#core/TypePatterns.js'
export const promoteUnary = name => match(Vector, (math, V, strategy) => {
const compOp = math.resolve(name, V.Component, strategy)
return Returns(Vector(ReturnType(compOp)), v => v.map(elt => compOp(elt)))
})
export const distributeFirst = name => match(
[Vector, Any],
(math, [V, E], strategy) => {
const compOp = math.resolve(name, [V.Component, E], strategy)
return Returns(
Vector(ReturnType(compOp)), (v, e) => v.map(f => compOp(f, e)))
})
export const distributeSecond = name => match(
[Any, Vector],
(math, [E, V], strategy) => {
const compOp = math.resolve(name, [E, V.Component], strategy)
return Returns(
Vector(ReturnType(compOp)), (e, v) => v.map(f => compOp(e, f)))
})
export const promoteBinary = name => [
distributeFirst(name),
distributeSecond(name),
match([Vector, Vector], (math, [V, W], strategy) => {
const VComp = V.Component
const WComp = W.Component
// special case: if the vector nesting depths do not match,
// we operate between the elements of the deeper one and the entire
// more shallow one:
if (V.vectorDepth > W.vectorDepth) {
const compOp = math.resolve(name, [VComp, W], strategy)
return Returns(
Vector(ReturnType(compOp)), (v, w) => v.map(f => compOp(f, w)))
}
if (V.vectorDepth < W.vectorDepth) {
const compOp = math.resolve(name, [V, WComp], strategy)
return Returns(
Vector(ReturnType(compOp)), (v, w) => w.map(f => compOp(v, f)))
}
const compOp = math.resolve(name, [VComp, WComp], strategy)
const opNoV = math.resolve(name, [Undefined, WComp], strategy)
const opNoW = math.resolve(name, [VComp, Undefined], strategy)
return Returns(
Vector(ReturnType(compOp)),
(v, w) => {
const vInc = Number(v.length > 1)
const wInc = Number(w.length >= v.length || w.length > 1)
const retval = []
let vIx = 0
let wIx = 0
while ((vInc && vIx < v.length)
|| (wInc && wIx < w.length)
) {
if (vIx >= v.length) {
retval.push(opNoV(undefined, w[wIx]))
} else if (wIx >= w.length) {
retval.push(opNoW(v[vIx], undefined))
} else retval.push(compOp(v[vIx], w[wIx]))
vIx += vInc
wIx += wInc
}
return retval
})
})
]

7
src/vector/logical.js Normal file
View file

@ -0,0 +1,7 @@
import {promoteBinary, promoteUnary} from './helpers.js'
export const not = promoteUnary('not')
export const and = promoteBinary('and')
export const or = promoteBinary('or')

95
src/vector/relational.js Normal file
View file

@ -0,0 +1,95 @@
import {Vector} from './Vector.js'
import {promoteBinary} from './helpers.js'
import {Unknown, Returns, ReturnType, Undefined} from '#core/Type.js'
import {Any, Optional, match} from '#core/TypePatterns.js'
import {BooleanT} from '#boolean/BooleanT.js'
export const deepEqual = [
match([Vector, Any], Returns(BooleanT, () => false)),
match([Any, Vector], Returns(BooleanT, () => false)),
match([Vector, Vector], (math, [V, W]) => {
const compDeep = math.deepEqual.resolve([V.Component, W.Component])
return Returns(BooleanT, (v,w) => v === w
|| (v.length === w.length
&& v.every((e, i) => compDeep(e, w[i]))))
})
]
export const indistinguishable = [
match([Vector, Any, Optional([Any, Any])], (math, [V, E, T]) => {
const VComp = V.Component
if (T.length === 0) { // no tolerances
const same = math.indistinguishable.resolve([VComp, E])
return Returns(
Vector(ReturnType(same)), (v, e) => v.map(f => same(f, e)))
}
const [[RT, AT]] = T
const same = math.indistinguishable.resolve([VComp, E, RT, AT])
return Returns(
Vector(ReturnType(same)),
(v, e, [[rT, aT]]) => v.map(f => same(f, e, rT, aT)))
}),
match([Any, Vector, Optional([Any, Any])], (math, [E, V, T]) => {
// reimplement to get other order in same so as not to assume
// same is symmetric, even though it probably is
const VComp = V.Component
if (T.length === 0) { // no tolerances
const same = math.indistinguishable.resolve([E, VComp])
return Returns(
Vector(ReturnType(same)), (e, v) => v.map(f => same(e, f)))
}
const [[RT, AT]] = T
const same = math.indistinguishable.resolve([E, VComp, RT, AT])
return Returns(
Vector(ReturnType(same)),
(e, v, [[rT, aT]]) => v.map(f => same(e, f, rT, aT)))
}),
match([Vector, Vector, Optional([Any, Any])], (math, [V, W, T]) => {
const VComp = V.Component
const WComp = W.Component
const inhomogeneous = VComp === Unknown || WComp === Unknown
let same
let sameNoV
let sameNoW
if (inhomogeneous) {
same = math.indistinguishable
sameNoV = same
sameNoW = same
} else if (T.length === 0) { // no tolerances
same = math.indistinguishable.resolve([VComp, WComp])
sameNoV = math.indistinguishable.resolve([Undefined, WComp])
sameNoW = math.indistinguishable.resolve([VComp, Undefined])
} else {
const [[RT, AT]] = T
same = math.indistinguishable.resolve([VComp, WComp, RT, AT])
sameNoV = math.indistinguishable.resolve([Undefined, WComp, RT, AT])
sameNoW = math.indistinguishable.resolve([VComp, Undefined, RT, AT])
}
return Returns(
inhomogeneous ? Vector(Unknown) : Vector(ReturnType(same)),
(v, w, [tol = [0, 0]]) => {
const [rT, aT] = tol
const vInc = Number(v.length > 1)
const wInc = Number(w.length >= v.length || w.length > 1)
const retval = []
let vIx = 0
let wIx = 0
while ((vInc && vIx < v.length)
|| (wInc && wIx < w.length)
) {
if (vIx >= v.length) {
retval.push(sameNoV(undefined, w[wIx], rT, aT))
} else if (wIx >= w.length) {
retval.push(sameNoW(v[vIx], undefined, rT, aT))
} else retval.push(same(v[vIx], w[wIx], rT, aT))
vIx += vInc
wIx += wInc
}
return retval
})
})
]
export const compare = promoteBinary('compare')
export const exceeds = promoteBinary('exceeds')

133
src/vector/type.js Normal file
View file

@ -0,0 +1,133 @@
import {Vector} from './Vector.js'
import {OneOf, Returns, ReturnType, Unknown} from '#core/Type.js'
import {Any, Multiple, match} from '#core/TypePatterns.js'
export const vector = match(Multiple(Any), (math, [TV]) => {
if (!TV.length) return Returns(Vector(Unknown), () => [])
let CompType = TV[0]
if (TV.some(T => T !== CompType)) CompType = Unknown
return Returns(Vector(CompType), v => v)
})
export const determinant = match(Vector(Vector), (math, M, strategy) => {
const Elt = M.Component.Component
const cloneElt = math.clone.resolve(Elt, strategy)
const mult = math.multiply.resolve([Elt, Elt], strategy)
const sub = math.subtract.resolve(
[ReturnType(mult), ReturnType(mult)], strategy)
const isZ = math.isZero.resolve(Elt, strategy)
const zElt = math.zero(Elt)
const clone = math.clone.resolve(M, strategy)
const div = math.divide.resolve([ReturnType(sub), Elt], strategy)
const neg = math.negate.resolve(Elt, strategy)
return Returns(OneOf(ReturnType(clone), ReturnType(sub), Elt), origm => {
const rows = origm.length
switch (rows) {
case 1: return cloneElt(origm[0][0])
case 2: {
const [[a, b], [c, d]] = origm
return sub(mult(a, d), mult(b, c))
}
default: { // Bareiss algorithm
const m = clone(origm)
let negated = false
const rowIndices = [...Array(rows).keys()] // track row indices
// because the algorithm may swap rows
for (let k = 0; k < rows; ++k) {
let k_ = rowIndices[k]
if (isZ(m[k_][k])) {
let _k = k
while (++_k < rows) {
if (!isZ(m[rowIndices[_k]][k])) {
k_ = rowIndices[_k]
rowIndices[_k] = rowIndices[k]
rowIndices[k] = k_
negated = !negated
break
}
}
if (_k === rows) return zElt
}
const piv = m[k_][k] // we now know nonzero
const piv_ = k === 0 ? 1 : m[rowIndices[k-1]][k-1]
for (let i = k + 1; i < rows; ++i) {
const i_ = rowIndices[i]
for (let j = k + 1; j < rows; ++j) {
m[i_][j] = div(
sub(mult(m[i_][j], piv), mult(m[i_][k], m[k_][j])),
piv_)
}
}
}
const det = m[rowIndices[rows - 1]][rows - 1]
return negated ? neg(det) : det
}}
})
})
function identitizer(cols, zero, one) {
const retval = []
for (let ix = 0; ix < cols; ++ix) {
const row = Array(cols).fill(zero)
row[ix] = one
retval.push(row)
}
return retval
}
export const identity = [
match(Any, (math, V) => {
const toNum = math.number.resolve(V)
const zero = math.zero(V)
const one = math.one(V)
return Returns(Vector(Vector(V)), n => identitizer(toNum(n), zero, one))
}),
match(Vector, (math, V) => {
switch (V.vectorDepth) {
case 1: {
const Elt = V.Component
const one = math.one(Elt)
return Returns(math.typeOf(one), () => one)
}
case 2: {
const Elt = V.Component.Component
const zero = math.zero(Elt)
const one = math.one(Elt)
return Returns(V, m => identitizer(
m.length ? m[0].length : 0, zero, one))
}
default:
throw new RangeError(
`'identity' not implemented on ${V.vectorDepth} dimensional arrays`)
}
})
]
// transposes a 2D matrix
function transposer(wrap, eltFun) {
return v => {
if (wrap) v = [v]
const cols = v.length ? v[0].length : 0
const retval = []
for (let ix = 0; ix < cols; ++ix) {
retval.push(v.map(row => eltFun(row[ix])))
}
return retval
}
}
export const transpose = match(Vector, (_math, V) => {
const wrapV = V.vectorDepth === 1
const Mat = wrapV ? Vector(V) : V
return Returns(Mat, transposer(wrapV, elt => elt))
})
// or with conjugation:
export const adjoint = match(Vector, (math, V, strategy) => {
const wrapV = V.vectorDepth === 1
const VComp = V.Component
const Elt = wrapV ? VComp : VComp.Component
const conj = math.conj.resolve(Elt, strategy)
const Mat = Vector(Vector(ReturnType(conj)))
return Returns(Mat, transposer(wrapV, conj))
})

10
src/vector/utils.js Normal file
View file

@ -0,0 +1,10 @@
import {promoteUnary} from './helpers.js'
export const clone = promoteUnary('clone')
export const isnan = promoteUnary('isnan')
export const isfinite = promoteUnary('isfinite')
export const isInteger = promoteUnary('isInteger')
export const isReal = promoteUnary('isReal')
export const nonImaginary = promoteUnary('nonImaginary')
export const re = promoteUnary('re')
export const im = promoteUnary('im')