feat: config and approximate equality (#19)
All checks were successful
/ test (push) Successful in 17s

Establishes a global config object for a TypeDispatcher instance, so far
  with just properties representing comparison tolerances. Begins a
  "relational" group of functions with basic approximate equality, and
  an initial primitive ordering comparison. Ensures that methods that
  depend on properties of `config` will be properly updated when those
  properties change.

Reviewed-on: #19
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Co-committed-by: Glen Whitney <glen@studioinfinity.org>
This commit is contained in:
Glen Whitney 2025-04-16 04:23:48 +00:00 committed by Glen Whitney
parent 27fa4b0193
commit 70ce01d12b
27 changed files with 788 additions and 218 deletions

View file

@ -0,0 +1,82 @@
import assert from 'assert'
import math from '#nanomath'
import * as numbers from '#number/all.js'
import * as generics from '#generic/all.js'
import {ResolutionError} from '#core/helpers.js'
import {TypeDispatcher} from '#core/TypeDispatcher.js'
describe('generic relational functions', () => {
it('tests equality for anything, approx on numbers', () => {
const {equal} = math
assert(equal(undefined, undefined))
assert(equal(math.types.NumberT, math.types.NumberT))
assert(!equal(math.types.NumberT, math.types.BooleanT))
assert(!equal(undefined, math.types.NumberT))
assert(equal(1, 1))
assert(equal(true, 1)) // questionable but same as mathjs
assert(!equal(undefined, true))
assert(equal(1, 1 + 0.9e-12))
assert(equal(0, 1e-16))
assert(!equal(1, 1 + 1.1e-12))
assert(!equal(0, 1.1e-15))
})
it('adjusts equality when config changes', () => {
const jn = new TypeDispatcher(generics, numbers)
const {equal} = jn
assert.strictEqual(equal(1, 1 + 0.9e-12), 1)
assert.strictEqual(equal(0, 1e-16), 1)
assert.strictEqual(equal(1, 1 + 1.1e-12), 0)
assert.strictEqual(equal(0, 1.1e-15), 0)
jn.config.relTol = 1e-10
assert.strictEqual(equal(1, 1 + 1.1e-12), 1)
assert.strictEqual(equal(1, 1 + 1.1e-10), 0)
assert.strictEqual(equal(0, 1.1e-15), 0)
jn.config.absTol = 1e-13
assert.strictEqual(equal(1, 1 + 1.1e-12), 1)
assert.strictEqual(equal(1, 1 + 1.1e-10), 0)
assert.strictEqual(equal(0, 1.1e-15), 1)
assert.strictEqual(equal(0, 1.1e-13), 0)
})
it('performs three-way comparison', () => {
const {compare} = math
assert.strictEqual(compare(-0.4e-15, +0.4e-15), 0)
assert.strictEqual(compare(2.2, true), 1)
assert.strictEqual(compare(-Infinity, 7), -1)
assert(isNaN(compare(NaN, 0)))
assert.throws(() => compare(false, NaN), TypeError)
assert(isNaN(compare(NaN, NaN)))
assert.throws(() => compare(true, false), TypeError)
assert.throws(() => compare(undefined, -1), ResolutionError)
})
it('determines the sign of numeric values', () => {
const {sign} = math
assert.strictEqual(sign(-8e-16), 0)
assert.strictEqual(sign(Infinity), 1)
assert.strictEqual(sign(-8e-14), -1)
assert(isNaN(sign(NaN)))
assert.throws(() => sign(false), TypeError)
assert.throws(() => sign(undefined), ResolutionError)
})
it('computes inequalities', () => {
const {unequal, larger, largerEq, smaller, smallerEq} = math
assert(!unequal(undefined, undefined))
assert(!unequal(math.types.NumberT, math.types.NumberT))
assert(unequal(math.types.NumberT, math.types.BooleanT))
assert(unequal(undefined, math.types.NumberT))
assert(!unequal(1, 1))
assert(!unequal(true, 1)) // questionable but same as mathjs
assert(unequal(undefined, true))
assert(!unequal(1, 1 + 0.9e-12))
assert(!unequal(0, 1e-16))
assert(unequal(1, 1 + 1.1e-12))
assert(unequal(0, 1.1e-15))
assert(larger(true, 0.5))
assert(!larger(3 + 1e-16, 3))
assert(largerEq(0.5, false))
assert(largerEq(3 + 1e-16, 3))
assert(smallerEq(3 + 1e-16, 3))
assert(!smaller(3, 3 + 1e-16))
})
})

View file

@ -0,0 +1,13 @@
import assert from 'assert'
import math from '#nanomath'
describe('generic utility functions', () => {
it('tests whether an element is zero', () => {
const {isZero} = math
assert(!isZero(3))
assert(isZero(3e-16))
assert(isZero(false))
assert(!isZero(true))
assert(isZero(undefined))
})
})

View file

@ -1 +1,4 @@
export * as arithmetic from './arithmetic.js'
export * as configuration from './config.js'
export * as relational from './relational.js'
export * as utilities from './utils.js'

5
src/generic/config.js Normal file
View file

@ -0,0 +1,5 @@
import {ImplementationsGenerator, onType} from '#core/helpers.js'
import {Passthru} from '#core/TypePatterns.js'
export const config = new ImplementationsGenerator(
() => onType(Passthru, {relTol: 1e-12, absTol: 1e-15}))

1
src/generic/helpers.js Normal file
View file

@ -0,0 +1 @@
export const ReturnsAs = (g, f) => (f.returns = g.returns, f)

106
src/generic/relational.js Normal file
View file

@ -0,0 +1,106 @@
import {ReturnsAs} from './helpers.js'
import {onType} from '#core/helpers.js'
import {Returns} from '#core/Type.js'
import {Any, matched} from '#core/TypePatterns.js'
import {boolnum} from '#number/helpers.js'
export const equal = onType([Any, Any], (math, [T, U]) => {
// Finding the correct signature of `indistinguishable` to use for
// testing (approximate) equality is tricky, because T or U might
// need to be converted for the sake of comparison, and some types
// allow tolerances for equality and others don't. So the plan is
// we first look up without tolerances, then we check the config for
// the matching type, and then we look up with tolerances.
let exactChecker
try {
exactChecker = math.indistinguishable.resolve([T, U])
} catch { // can't compare, so no way they can be equal
return boolnum(() => false)(math)
}
// Get the type of the first argument to the matching checker:
const ByType = matched(exactChecker.template).flat()[0]
// Now see if there are tolerances for that type:
const typeConfig = math.resolve('config', [ByType])
if ('relTol' in typeConfig) {
try {
const {relTol, absTol} = typeConfig
const RT = math.typeOf(relTol)
const AT = math.typeOf(absTol)
const approx = math.indistinguishable.resolve([T, U, RT, AT])
return ReturnsAs(
approx, (t, u) => approx(t, u, relTol, absTol))
} catch {} // fall through to case with no tolerances
}
// either no tolerances or no matching signature for indistinguishable
return exactChecker
})
// now that we have `equal` and `exceeds`, pretty much everything else should
// be easy:
export const compare = onType([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const gt = math.exceeds.resolve([T, U])
const zero = math.zero(T) // asymmetry here is unfortunate, but we have
// to pick some argument's zero to use, so the first argument seemed
// the most reasonable.
const one = math.one(T)
const negOne = math.negate(one)
if (math.typeOf(negOne) !== T) {
throw new TypeError(
`Cannot 'compare()' type '${T}' that has no negative one.`)
}
const hasnanT = math.hasnan(T)
const hasnanU = math.hasnan(U)
if (!hasnanT && !hasnanU) {
return Returns(T, (t, u) => eq(t, u) ? zero : gt(t, u) ? one : negOne)
}
if (hasnanU && !hasnanT) {
throw new TypeError(
`can't compare type ${T} without NaN and type ${U} with NaN`)
}
const isTnan = hasnanT && math.isnan.resolve([T])
const isUnan = hasnanU && math.isnan.resolve([U])
const nanT = hasnanT && math.nan(T)
return Returns(T, (t, u) => {
if (hasnanT && isTnan(t)) return nanT
if (hasnanU && isUnan(u)) return nanT // not a typo, stay in T
if (eq(t, u)) return zero
return gt(t, u) ? one : negOne
})
})
export const sign = onType(Any, (math, T) => {
const zero = math.zero(T)
const comp = math.compare.resolve([T, T])
return ReturnsAs(comp, t => comp(t, zero))
})
export const unequal = (math, types) => {
const eq = math.equal.resolve(types)
return ReturnsAs(eq, (...args) => !eq(...args))
}
export const larger = onType([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([T, U])
return boolnum((t, u) => !eq(t, u) && bigger(t, u))(math)
})
export const largerEq = onType([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([T, U])
return ReturnsAs(bigger, (t, u) => eq(t, u) || bigger(t, u))
})
export const smaller = onType([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([U, T])
return boolnum((t, u) => !eq(t, u) && bigger(u, t))(math)
})
export const smallerEq = onType([Any, Any], (math, [T, U]) => {
const eq = math.equal.resolve([T, U])
const bigger = math.exceeds.resolve([U, T])
return ReturnsAs(bigger, (t, u) => eq(t, u) || bigger(u, t))
})

13
src/generic/utils.js Normal file
View file

@ -0,0 +1,13 @@
import {ReturnsAs} from './helpers.js'
import {onType, ResolutionError} from '#core/helpers.js'
import {Returns} from '#core/Type.js'
import {Any} from "#core/TypePatterns.js"
export const isZero = (math, [T]) => {
if (!T) { // called with no arguments
throw new ResolutionError('isZero() requires one argument')
}
const z = math.zero(T)
const eq = math.equal.resolve([T, T])
return ReturnsAs(eq, x => eq(z, x))
}