feat: Engine diagnostics #92
1 changed files with 70 additions and 37 deletions
|
@ -2,7 +2,7 @@ use charming::{
|
|||
Chart,
|
||||
WasmRenderer,
|
||||
component::{Axis, DataZoom, Grid},
|
||||
element::AxisType,
|
||||
element::{AxisType, Symbol},
|
||||
series::{Line, Scatter},
|
||||
};
|
||||
use sycamore::prelude::*;
|
||||
|
@ -50,6 +50,10 @@ fn RealizationStatus() -> View {
|
|||
}
|
||||
}
|
||||
|
||||
fn into_time_point((step, value): (usize, f64)) -> Vec<Option<f64>> {
|
||||
vec![Some(step as f64), Some(value)]
|
||||
}
|
||||
|
||||
// the loss history from the last realization
|
||||
#[component]
|
||||
fn LossHistory() -> View {
|
||||
|
@ -60,38 +64,35 @@ fn LossHistory() -> View {
|
|||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the loss history
|
||||
let scaled_loss = state.assembly.descent_history.with(
|
||||
|history| history.scaled_loss.clone()
|
||||
let scaled_loss: Vec<_> = state.assembly.descent_history.with(
|
||||
|history| history.scaled_loss
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(step, &loss)| (step, loss))
|
||||
.map(into_time_point)
|
||||
.collect()
|
||||
);
|
||||
let step_cnt = scaled_loss.len();
|
||||
|
||||
// initialize the chart axes and series
|
||||
const MIN_INTERVAL: f64 = 0.01;
|
||||
let mut step_axis = Axis::new()
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let scaled_loss_axis = Axis::new()
|
||||
.type_(AxisType::Value)
|
||||
.min(0)
|
||||
.min_interval(MIN_INTERVAL);
|
||||
let scaled_loss_axis = Axis::new().type_(AxisType::Log);
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
// chart: it instead leads to previous data being re-used
|
||||
let mut scaled_loss_series = Line::new();
|
||||
if step_cnt > 0 {
|
||||
step_axis = step_axis.data(
|
||||
(0..step_cnt).map(|step| step.to_string()).collect()
|
||||
);
|
||||
scaled_loss_series = scaled_loss_series.data(scaled_loss);
|
||||
} else {
|
||||
step_axis = step_axis.data(vec![0.to_string()]);
|
||||
scaled_loss_series = scaled_loss_series.data(vec![None::<f64>]);
|
||||
}
|
||||
let scaled_loss_series = Line::new().data(
|
||||
if scaled_loss.len() > 0 {
|
||||
scaled_loss
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let chart = Chart::new()
|
||||
.animation(false)
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40).start(0).end(100))
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
|
||||
.x_axis(step_axis)
|
||||
.y_axis(scaled_loss_axis)
|
||||
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
|
||||
|
@ -114,41 +115,73 @@ fn SpectrumHistory() -> View {
|
|||
|
||||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the spectrum of the Hessian at each step
|
||||
let hess_eigvals = state.assembly.descent_history.with(
|
||||
// get the spectrum of the Hessian at each step, split into its
|
||||
// positive and negative parts. throw away eigenvalues that are
|
||||
// close to zero
|
||||
const ZERO_THRESHOLD: f64 = 1e-6;
|
||||
let (
|
||||
hess_eigvals_pos,
|
||||
hess_eigvals_neg
|
||||
): (Vec<_>, Vec<_>) = state.assembly.descent_history.with(
|
||||
|history| history.hess_eigvals
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(
|
||||
|(step, eigvals)| eigvals.iter().map(
|
||||
move |val| vec![step as f64, *val]
|
||||
)
|
||||
|(step, eigvals)| eigvals
|
||||
.iter()
|
||||
.filter(|&&val| val.abs() > ZERO_THRESHOLD)
|
||||
.map(
|
||||
move |&val| (step, val)
|
||||
)
|
||||
)
|
||||
.flatten()
|
||||
.collect::<Vec<_>>()
|
||||
.partition(|&(_, val)| val > 0.0)
|
||||
);
|
||||
|
||||
// initialize the chart axes and series
|
||||
let step_axis = Axis::new();
|
||||
let eigval_axis = Axis::new();
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let eigval_axis = Axis::new().type_(AxisType::Log);
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
// chart: it instead leads to previous data being re-used
|
||||
let mut eigval_series = Scatter::new().symbol_size(7);
|
||||
if hess_eigvals.len() > 0 {
|
||||
eigval_series = eigval_series.data(hess_eigvals);
|
||||
} else {
|
||||
eigval_series = eigval_series.data(vec![None::<f64>, None::<f64>]);
|
||||
}
|
||||
let eigval_series_pos = Scatter::new()
|
||||
.symbol_size(4.5)
|
||||
.data(
|
||||
if hess_eigvals_pos.len() > 0 {
|
||||
hess_eigvals_pos
|
||||
.into_iter()
|
||||
.map(into_time_point)
|
||||
.collect()
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let eigval_series_neg = Scatter::new()
|
||||
.symbol(Symbol::Diamond)
|
||||
.symbol_size(6.0)
|
||||
.data(
|
||||
if hess_eigvals_neg.len() > 0 {
|
||||
hess_eigvals_neg
|
||||
.into_iter()
|
||||
.map(|(step, val)| (step, -val))
|
||||
.map(into_time_point)
|
||||
.collect()
|
||||
} else {
|
||||
vec![vec![Some(0.0), None::<f64>]]
|
||||
}
|
||||
);
|
||||
let chart = Chart::new()
|
||||
.animation(false)
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40).start(0).end(100))
|
||||
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
|
||||
.x_axis(step_axis)
|
||||
.y_axis(eigval_axis)
|
||||
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
|
||||
.series(eigval_series);
|
||||
.series(eigval_series_pos)
|
||||
.series(eigval_series_neg);
|
||||
renderer.render(CONTAINER_ID, &chart).unwrap();
|
||||
});
|
||||
});
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue