Switch to Euclidean-invariant projection onto tangent space of solution variety #34

Merged
glen merged 9 commits from uniform-projection into main 2025-01-31 19:34:34 +00:00
5 changed files with 432 additions and 54 deletions

View file

@ -0,0 +1,72 @@
use nalgebra::{DMatrix, DVector};
use std::{array, f64::consts::PI};
use dyna3::engine::{Q, point, realize_gram, PartialMatrix};
fn main() {
// set up a kaleidocycle, made of points with fixed distances between them,
// and find its tangent space
const N_POINTS: usize = 12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
gram_to_be.push_sym(block + j, block_next + k, -0.625);
}
}
}
gram_to_be
};
let guess = {
const N_HINGES: usize = 6;
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_hor = (n as f64) * PI/3.0;
let ang_vert = ((n + 1) as f64) * PI/3.0;
let x_vert = ang_vert.cos();
let y_vert = ang_vert.sin();
[
point(0.0, 0.0, 0.0),
point(ang_hor.cos(), ang_hor.sin(), 0.0),
point(x_vert, y_vert, -0.5),
point(x_vert, y_vert, 0.5)
]
}
).collect::<Vec<_>>();
DMatrix::from_columns(&guess_elts)
};
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
let (config, tangent, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("Completed Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
// find the kaleidocycle's twist motion
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1)
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
print!("Twist motion:{}", normalization * twist_motion);
}

View file

@ -9,3 +9,4 @@
cargo run --example irisawa-hexlet cargo run --example irisawa-hexlet
cargo run --example three-spheres cargo run --example three-spheres
cargo run --example point-on-sphere cargo run --example point-on-sphere
cargo run --example kaleidocycle

View file

@ -5,7 +5,7 @@ use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*; use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */ use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q}; use crate::engine::{realize_gram, local_unif_to_std, ConfigSubspace, PartialMatrix, Q};
// the types of the keys we use to access an assembly's elements and constraints // the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize; pub type ElementKey = usize;
@ -120,6 +120,7 @@ pub struct Constraint {
pub active: Signal<bool> pub active: Signal<bool>
} }
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> { pub struct ElementMotion<'a> {
pub key: ElementKey, pub key: ElementKey,
pub velocity: DVectorView<'a, f64> pub velocity: DVectorView<'a, f64>
@ -359,7 +360,14 @@ impl Assembly {
// this element didn't have a column index when we started, so // this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained // by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index); let mut target_column = motion_proj.column_mut(column_index);
target_column += elt_motion.velocity; let unif_to_std = self.elements.with_untracked(
|elts| {
elts[elt_motion.key].representation.with_untracked(
|rep| local_unif_to_std(rep.as_view())
)
}
);
target_column += unif_to_std * elt_motion.velocity;
} }
} }

View file

@ -130,6 +130,8 @@ pub fn Display() -> View {
let translate_pos_y = create_signal(0.0); let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0); let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0); let translate_pos_z = create_signal(0.0);
let shrink_neg = create_signal(0.0);
let shrink_pos = create_signal(0.0);
// change listener // change listener
let scene_changed = create_signal(true); let scene_changed = create_signal(true);
@ -164,6 +166,7 @@ pub fn Display() -> View {
// manipulation // manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
// display parameters // display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */ const OPACITY: f32 = 0.5; /* SCAFFOLDING */
@ -292,6 +295,8 @@ pub fn Display() -> View {
let translate_pos_y_val = translate_pos_y.get(); let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get(); let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get(); let translate_pos_z_val = translate_pos_z.get();
let shrink_neg_val = shrink_neg.get();
let shrink_pos_val = shrink_pos.get();
// update the assembly's orientation // update the assembly's orientation
let ang_vel = { let ang_vel = {
@ -323,24 +328,27 @@ pub fn Display() -> View {
let sel = state.selection.with( let sel = state.selection.with(
|sel| *sel.into_iter().next().unwrap() |sel| *sel.into_iter().next().unwrap()
); );
let rep = state.assembly.elements.with_untracked(
|elts| elts[sel].representation.get_clone_untracked()
);
let translate_x = translate_pos_x_val - translate_neg_x_val; let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val; let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val; let translate_z = translate_pos_z_val - translate_neg_z_val;
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 { let shrink = shrink_pos_val - shrink_neg_val;
let vel_field = { let translating =
let u = Vector3::new(translate_x, translate_y, translate_z).normalize(); translate_x != 0.0
DMatrix::from_column_slice(5, 5, &[ || translate_y != 0.0
0.0, 0.0, 0.0, 0.0, u[0], || translate_z != 0.0;
0.0, 0.0, 0.0, 0.0, u[1], if translating || shrink != 0.0 {
0.0, 0.0, 0.0, 0.0, u[2], let elt_motion = {
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0, let u = if translating {
0.0, 0.0, 0.0, 0.0, 0.0 TRANSLATION_SPEED * Vector3::new(
]) translate_x, translate_y, translate_z
).normalize()
} else {
Vector3::zeros()
};
time_step * DVector::from_column_slice(
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
)
}; };
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
assembly_for_raf.deform( assembly_for_raf.deform(
vec![ vec![
ElementMotion { ElementMotion {
@ -501,6 +509,8 @@ pub fn Display() -> View {
"s" | "S" if shift => translate_pos_z.set(value), "s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value), "w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value), "s" | "S" => translate_neg_y.set(value),
"]" | "}" => shrink_neg.set(value),
"[" | "{" => shrink_pos.set(value),
_ => manipulating = false _ => manipulating = false
}; };
if manipulating { if manipulating {

View file

@ -90,32 +90,34 @@ impl PartialMatrix {
#[derive(Clone)] #[derive(Clone)]
pub struct ConfigSubspace { pub struct ConfigSubspace {
assembly_dim: usize, assembly_dim: usize,
basis: Vec<DMatrix<f64>> basis_std: Vec<DMatrix<f64>>,
basis_proj: Vec<DMatrix<f64>>
} }
impl ConfigSubspace { impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace { pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace { ConfigSubspace {
assembly_dim: assembly_dim, assembly_dim: assembly_dim,
basis: Vec::new() basis_proj: Vec::new(),
basis_std: Vec::new()
} }
} }
// approximate the kernel of a symmetric endomorphism of the configuration // approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part // space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD` // of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace { fn symmetric_kernel(a: DMatrix<f64>, proj_to_std: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
const ELEMENT_DIM: usize = 5; // find a basis for the kernel. the basis is expressed in the projection
const THRESHOLD: f64 = 1.0e-4; // coordinates, and it's orthonormal with respect to the projection
let eig = SymmetricEigen::new(a); // inner product
const THRESHOLD: f64 = 0.1;
let eig = SymmetricEigen::new(proj_to_std.tr_mul(&a) * &proj_to_std);
let eig_vecs = eig.eigenvectors.column_iter(); let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs); let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis = eig_pairs.filter_map( let basis_proj = DMatrix::from_columns(
|(λ, v)| (λ.abs() < THRESHOLD).then_some( eig_pairs.filter_map(
Into::<DMatrix<f64>>::into( |(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim)) ).collect::<Vec<_>>().as_slice()
)
)
); );
/* DEBUG */ /* DEBUG */
@ -125,30 +127,45 @@ impl ConfigSubspace {
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues) format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
)); ));
// express the basis in the standard coordinates
let basis_std = proj_to_std * &basis_proj;
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
ConfigSubspace { ConfigSubspace {
assembly_dim: assembly_dim, assembly_dim: assembly_dim,
basis: basis.collect() basis_std: basis_std.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
).collect(),
basis_proj: basis_proj.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(UNIFORM_DIM), Dyn(assembly_dim))
)
).collect()
} }
} }
pub fn dim(&self) -> usize { pub fn dim(&self) -> usize {
self.basis.len() self.basis_std.len()
} }
pub fn assembly_dim(&self) -> usize { pub fn assembly_dim(&self) -> usize {
self.assembly_dim self.assembly_dim
} }
// find the projection onto this subspace, with respect to the Euclidean // find the projection onto this subspace of the motion where the element
// inner product, of the motion where the element with the given column // with the given column index has velocity `v`. the velocity is given in
// index has velocity `v` // projection coordinates, and the projection is done with respect to the
// projection inner product
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> { pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 { if self.dim() == 0 {
const ELEMENT_DIM: usize = 5; const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim) DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else { } else {
self.basis.iter().map( self.basis_proj.iter().zip(self.basis_std.iter()).map(
|b| b.column(column_index).dot(&v) * b |(b_proj, b_std)| b_proj.column(column_index).dot(&v) * b_std
).sum() ).sum()
} }
} }
@ -215,6 +232,37 @@ fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f6
result result
} }
// given a normalized vector `v` representing an element, build a basis for the
// element's linear configuration space consisting of:
// - the unit translation motions of the element
// - the unit shrinking motion of the element, if it's a sphere
// - one or two vectors whose coefficients vanish on the tangent space of the
// normalization variety
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
let curv = 2.0*v[3];
if v.dot(&(&*Q * v)) < 0.5 {
// `v` represents a point. the normalization condition says that the
// curvature component of `v` is 1/2
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
0.0, 0.0, 0.0, 0.0, 1.0
])
} else {
// `v` represents a sphere. the normalization condition says that the
// Lorentz product of `v` with itself is 1
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0
])
}
}
// use backtracking line search to find a better configuration // use backtracking line search to find a better configuration
fn seek_better_config( fn seek_better_config(
gram: &PartialMatrix, gram: &PartialMatrix,
@ -344,7 +392,19 @@ pub fn realize_gram(
} }
let success = state.loss < tol; let success = state.loss < tol;
let tangent = if success { let tangent = if success {
ConfigSubspace::symmetric_kernel(hess, assembly_dim) // express the uniform basis in the standard basis
const UNIFORM_DIM: usize = 4;
let total_dim_unif = UNIFORM_DIM * assembly_dim;
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim_unif);
for n in 0..assembly_dim {
let block_start = (element_dim * n, UNIFORM_DIM * n);
unif_to_std
.view_mut(block_start, (element_dim, UNIFORM_DIM))
.copy_from(&local_unif_to_std(state.config.column(n)));
}
// find the kernel of the Hessian. give it the uniform inner product
ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim)
} else { } else {
ConfigSubspace::zero(assembly_dim) ConfigSubspace::zero(assembly_dim)
}; };
@ -424,6 +484,9 @@ pub mod irisawa {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use nalgebra::Vector3;
use std::{array, f64::consts::{FRAC_1_SQRT_2, PI}, iter};
use super::{*, irisawa::realize_irisawa_hexlet}; use super::{*, irisawa::realize_irisawa_hexlet};
#[test] #[test]
@ -486,10 +549,8 @@ mod tests {
} }
#[test] #[test]
fn tangent_test() { fn tangent_test_three_spheres() {
const SCALED_TOL: f64 = 1.0e-12; const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
const ASSEMBLY_DIM: usize = 3;
let gram = { let gram = {
let mut gram_to_be = PartialMatrix::new(); let mut gram_to_be = PartialMatrix::new();
for j in 0..3 { for j in 0..3 {
@ -514,32 +575,258 @@ mod tests {
assert_eq!(history.scaled_loss.len(), 1); assert_eq!(history.scaled_loss.len(), 1);
// confirm that the tangent space has dimension five or less // confirm that the tangent space has dimension five or less
let ConfigSubspace(ref tangent_basis) = tangent; assert_eq!(tangent.basis_std.len(), 5);
assert_eq!(tangent_basis.len(), 5);
// confirm that the tangent space contains all the motions we expect it // confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space, // to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be // this confirms that the tangent space is what we expect it to be
let tangent_motions = vec![ const UNIFORM_DIM: usize = 4;
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM), let element_dim = guess.nrows();
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM), let assembly_dim = guess.ncols();
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM), let tangent_motions_unif = vec![
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM), basis_matrix((0, 1), UNIFORM_DIM, assembly_dim),
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[ basis_matrix((1, 1), UNIFORM_DIM, assembly_dim),
0.0, 0.0, 0.0, 0.0, 0.0, basis_matrix((0, 2), UNIFORM_DIM, assembly_dim),
0.0, 0.0, -1.0, -0.25, -1.0, basis_matrix((1, 2), UNIFORM_DIM, assembly_dim),
0.0, 0.0, -1.0, 0.25, 1.0 DMatrix::<f64>::from_column_slice(UNIFORM_DIM, assembly_dim, &[
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -0.5, -0.5,
0.0, 0.0, -0.5, 0.5
]) ])
]; ];
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL; let tangent_motions_std = vec![
for motion in tangent_motions { basis_matrix((0, 1), element_dim, assembly_dim),
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map( basis_matrix((1, 1), element_dim, assembly_dim),
basis_matrix((0, 2), element_dim, assembly_dim),
basis_matrix((1, 2), element_dim, assembly_dim),
DMatrix::<f64>::from_column_slice(element_dim, assembly_dim, &[
0.0, 0.0, 0.0, 0.00, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
let motion_proj: DMatrix<_> = motion_unif.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k) |(k, v)| tangent.proj(&v, k)
).sum(); ).sum();
assert!((motion - motion_proj).norm_squared() < tol_sq); assert!((motion_std - motion_proj).norm_squared() < tol_sq);
} }
} }
fn translation_motion_unif(vel: &Vector3<f64>, assembly_dim: usize) -> Vec<DVector<f64>> {
let mut elt_motion = DVector::zeros(4);
elt_motion.fixed_rows_mut::<3>(0).copy_from(vel);
iter::repeat(elt_motion).take(assembly_dim).collect()
}
fn rotation_motion_unif(ang_vel: &Vector3<f64>, points: Vec<DVectorView<f64>>) -> Vec<DVector<f64>> {
points.into_iter().map(
|pt| {
let vel = ang_vel.cross(&pt.fixed_rows::<3>(0));
let mut elt_motion = DVector::zeros(4);
elt_motion.fixed_rows_mut::<3>(0).copy_from(&vel);
elt_motion
}
).collect()
}
#[test]
fn tangent_test_kaleidocycle() {
// set up a kaleidocycle, made of points with fixed distances between
// them, and find its tangent space
const N_POINTS: usize = 12;
const N_HINGES: usize = 6;
const SCALED_TOL: f64 = 1.0e-12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
gram_to_be.push_sym(block + j, block_next + k, -0.625);
}
}
}
gram_to_be
};
let guess = {
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_hor = (n as f64) * PI/3.0;
let ang_vert = ((n + 1) as f64) * PI/3.0;
let x_vert = ang_vert.cos();
let y_vert = ang_vert.sin();
[
point(0.0, 0.0, 0.0),
point(ang_hor.cos(), ang_hor.sin(), 0.0),
point(x_vert, y_vert, -0.5),
point(x_vert, y_vert, 0.5)
]
}
).collect::<Vec<_>>();
DMatrix::from_columns(&guess_elts)
};
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// list some motions that should form a basis for the tangent space of
// the solution variety
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let tangent_motions_unif = vec![
// the translations along the coordinate axes
translation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), assembly_dim),
translation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), assembly_dim),
translation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), assembly_dim),
// the rotations about the coordinate axes
rotation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), guess.column_iter().collect()),
rotation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), guess.column_iter().collect()),
rotation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), guess.column_iter().collect()),
// the twist motion. more precisely: a motion that keeps the center
// of mass stationary and preserves the distances between the
// vertices to first order. this has to be the twist as long as:
// - twisting is the kaleidocycle's only internal degree of
// freedom
// - every first-order motion of the kaleidocycle comes from an
// actual motion
(0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_vert = ((n + 1) as f64) * PI/3.0;
let vel_vert_x = 4.0 * ang_vert.cos();
let vel_vert_y = 4.0 * ang_vert.sin();
[
DVector::from_column_slice(&[0.0, 0.0, 5.0, 0.0]),
DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]),
DVector::from_column_slice(&[-vel_vert_x, -vel_vert_y, -3.0, 0.0]),
DVector::from_column_slice(&[vel_vert_x, vel_vert_y, -3.0, 0.0])
]
}
).collect::<Vec<_>>()
];
let tangent_motions_std = tangent_motions_unif.iter().map(
|motion| DMatrix::from_columns(
&guess.column_iter().zip(motion).map(
|(v, elt_motion)| local_unif_to_std(v) * elt_motion
).collect::<Vec<_>>()
)
).collect::<Vec<_>>();
// confirm that the dimension of the tangent space is no greater than
// expected
assert_eq!(tangent.basis_std.len(), tangent_motions_unif.len());
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
let motion_proj: DMatrix<_> = motion_unif.into_iter().enumerate().map(
|(k, v)| tangent.proj(&v.as_view(), k)
).sum();
assert!((motion_std - motion_proj).norm_squared() < tol_sq);
}
}
fn translation(dis: Vector3<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
1.0, 0.0, 0.0, 0.0, dis[0],
0.0, 1.0, 0.0, 0.0, dis[1],
0.0, 0.0, 1.0, 0.0, dis[2],
2.0*dis[0], 2.0*dis[1], 2.0*dis[2], 1.0, dis.norm_squared(),
0.0, 0.0, 0.0, 0.0, 1.0
])
}
// confirm that projection onto a configuration subspace is equivariant with
// respect to Euclidean motions
#[test]
fn proj_equivar_test() {
// find a pair of spheres that meet at 120°
const SCALED_TOL: f64 = 1.0e-12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
gram_to_be.push_sym(0, 0, 1.0);
gram_to_be.push_sym(1, 1, 1.0);
gram_to_be.push_sym(0, 1, 0.5);
gram_to_be
};
let guess_orig = DMatrix::from_columns(&[
sphere(0.0, 0.0, 0.5, 1.0),
sphere(0.0, 0.0, -0.5, 1.0)
]);
let (config_orig, tangent_orig, success_orig, history_orig) = realize_gram(
&gram, guess_orig.clone(), &[],
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config_orig, guess_orig);
assert_eq!(success_orig, true);
assert_eq!(history_orig.scaled_loss.len(), 1);
// find another pair of spheres that meet at 120°. we'll think of this
// solution as a transformed version of the original one
let guess_tfm = {
let a = 0.5 * FRAC_1_SQRT_2;
DMatrix::from_columns(&[
sphere(a, 0.0, 7.0 + a, 1.0),
sphere(-a, 0.0, 7.0 - a, 1.0)
])
};
let (config_tfm, tangent_tfm, success_tfm, history_tfm) = realize_gram(
&gram, guess_tfm.clone(), &[],
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config_tfm, guess_tfm);
assert_eq!(success_tfm, true);
assert_eq!(history_tfm.scaled_loss.len(), 1);
// project a nudge to the tangent space of the solution variety at the
// original solution
let motion_orig = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let motion_orig_proj = tangent_orig.proj(&motion_orig.as_view(), 0);
// project the equivalent nudge to the tangent space of the solution
// variety at the transformed solution
let motion_tfm = DVector::from_column_slice(&[FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0]);
let motion_tfm_proj = tangent_tfm.proj(&motion_tfm.as_view(), 0);
// take the transformation that sends the original solution to the
// transformed solution and apply it to the motion that the original
// solution makes in response to the nudge
const ELEMENT_DIM: usize = 5;
let rot = DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
FRAC_1_SQRT_2, 0.0, -FRAC_1_SQRT_2, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0
]);
let transl = translation(Vector3::new(0.0, 0.0, 7.0));
let motion_proj_tfm = transl * rot * motion_orig_proj;
// confirm that the projection of the nudge is equivariant. we loosen
// the comparison tolerance because the transformation seems to
// introduce some numerical error
const SCALED_TOL_TFM: f64 = 1.0e-9;
let tol_sq = ((guess_orig.nrows() * guess_orig.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq);
}
// at the frozen indices, the optimization steps should have exact zeros, // at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess // and the realized configuration should match the initial guess
#[test] #[test]