Compare commits

...
Sign in to create a new pull request.

9 commits

Author SHA1 Message Date
6dbbe2ce2d chore: Hopefully final formatting items from review
All checks were successful
/ test (pull_request) Successful in 3m36s
2025-10-10 22:57:52 -07:00
627cea455c chore: Properly punctuate README
All checks were successful
/ test (pull_request) Successful in 3m38s
2025-10-10 22:48:46 -07:00
50c51ca08f chore: revert 80-character limit, reorder and rename index message helper
All checks were successful
/ test (pull_request) Successful in 3m38s
2025-10-10 18:05:09 -07:00
c0e6ebf3d6 chore: uniformize error messages, 80-char lines, import fmt::Display
All checks were successful
/ test (pull_request) Successful in 3m48s
2025-10-10 09:39:57 -07:00
Aaron Fenyes
c081f1a809 Revert "Spruce up formatting and error messages"
All checks were successful
/ test (pull_request) Successful in 3m40s
This reverts commit adc60ac5c1. We decided
that it would be better for me to request formatting changes one by one.
2025-10-09 22:36:37 -07:00
Aaron Fenyes
adc60ac5c1 Spruce up formatting and error messages
All checks were successful
/ test (pull_request) Successful in 3m43s
Make the new code's formatting and error messages more consistent with
the previous code. I don't necessarily have a strong preference for the
previous conventions, but I do like stuff to be consistent.
2025-10-07 16:19:14 -07:00
Aaron Fenyes
27edbfb010 Streamline axis naming
This makes it simpler, from the programmer's perspective, to get the
name of an axis as a string slice and to format an axis name into a
string. To me, the matching method `Axis::name` seems more direct than
the explicit lookup table that it replaces, and I'm hoping that it will
be about as easy for the compiler to inline, or even easier.

Implementing `Display` enables us to hand an `Axis` to a string
formatter without any explicit conversion. It adds extra code in the
short run, but I'd expect it to simplify our code in the long run by
fitting into the conventions set by the Rust standard library.
2025-10-07 15:36:12 -07:00
46ffd6c285 chore: typographical improvements per review
All checks were successful
/ test (pull_request) Successful in 3m45s
2025-10-06 16:31:02 -06:00
ecbbe2068c feat: Point coordinate regulators
All checks were successful
/ test (pull_request) Successful in 3m35s
Implements regulators for the Euclidean coordinates of Point entities,
  automatically creating all three of them for each added point entity. When
  such a regulator is set, it freezes the corresponding representation
  coordinate to the set point. In addition, if all three coordinates of a
  given Point are set, the coradius coordinate (which holds the norm of the
  point) is frozen as well.

  Note that a PointCoordinateRegulator must be created with a Point as the
  subject. This commit modifies HalfCurvatureRegulator analogously, so that
  it can only be created with a Sphere.

  A couple of prospective issues that should be filed in association with
  this commit:
  * The new coordinate regulators create redundant display information with
    the raw representation coordinates of a point that are already shown in
    the outline view.
  * The optimization status of these regulators together with HalfCurvature
    regulators (i.e., the ones implemented by freezing coordinates) is different
    from InversiveDistance regulators when an Assembly is unrealizable: the
    frozen-coordinate constraints will be "hard" in that they will be forced
    to precisely equal their set point, whereas the distance regulators are
    "soft" in that they can be relaxed from their set points in an effort to
    minimize the loss function of the configuration as compared to the values
    of the constraints. Perhaps at some point we should/will have a mechanism
    to specify the softness/hardness of constraints, but in the meantime,
    there should not be two different categories of constraints. Suppose we
    decide that by default that all constraints are soft. Then the optimizer
    should be able to search changing, for example, the radius of a
    curvature-constrained sphere, so as to minimize the loss function (for a
    loss that would therefore presumably have a term akin to the square of the
    difference between the specified and actual half-curvature of the sphere).
    For example, suppose you specify that the half-curvature of a sphere is 1
    (so it has radius 1/2) but that its distance to a point is -1. These
    constraints cannot be satisfied, so the optimization fails, presumably
    with the point at the sphere center, and the sphere with radius 1/2.
    So all of the loss is concentrated in the difference between the actual
    point-sphere distance being -1/2, not -1. It would be more appropriate
    (in the all-soft constraint regime) to end up at something like a sphere of
    half-curvature 1/√2 with the point at the center, so that the loss is split
    between both the half-curvature and the distance to the sphere being off by
    1 - 1/√2. (At a guess, that would minimize the sum of the squares of the
    two differences.)
2025-09-20 00:51:26 -07:00
6 changed files with 180 additions and 49 deletions

View file

@ -12,11 +12,11 @@ Note that currently this is just the barest beginnings of the project, more of a
### Implementation goals
* Comfortable, intuitive UI
* Provide a comfortable, intuitive UI
* Able to run in browser (so implemented in WASM-compatible language)
* Allow execution in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well
## Prototype
@ -24,38 +24,40 @@ The latest prototype is in the folder `app-proto`. It includes both a user inter
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
- It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
- If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager.
- It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup).
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain".
- If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you.
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html).
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/).
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool.
- In the future, `trunk` can be updated with the same command. (You may need the `--locked` flag if your ambient version of `rustc` does not match that required by `trunk`.)
6. Add the `.cargo/bin` folder in your home directory to your executable search path
- This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
- On POSIX systems, the search path is stored in the `PATH` environment variable
- This lets you call Trunk, and other tools installed by Cargo, without specifying their paths.
- On POSIX systems, the search path is stored in the `PATH` environment variable.
- Alternatively, if you don't want to adjust your `PATH`, you can install `trunk` in another directory `DIR` via `cargo install --root DIR trunk`.
### Play with the prototype
1. From the `app-proto` folder, call `trunk serve --release` to build and serve the prototype
- The crates the prototype depends on will be downloaded and served automatically
- For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag
1. From the `app-proto` folder, call `trunk serve --release` to build and serve the prototype.
- The crates the prototype depends on will be downloaded and served automatically.
- For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag.
- If you want to stay in the top-level folder, you can call `trunk serve --config app-proto [--release]` from there instead.
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
- Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`.
- Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype.
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype.
### Run the engine on some example problems
1. Use `sh` to run the script `tools/run-examples.sh`
- The script is location-independent, so you can do this from anywhere in the dyna3 repository
1. Use `sh` to run the script `tools/run-examples.sh`.
- The script is location-independent, so you can do this from anywhere in the dyna3 repository.
- The call from the top level of the repository is:
```bash
sh tools/run-examples.sh
```
- For each example problem, the engine will print the value of the loss function at each optimization step
- The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then
- For each example problem, the engine will print the value of the loss function at each optimization step.
- The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then execute
```julia
include("irisawa-hexlet.jl")
@ -64,24 +66,24 @@ The latest prototype is in the folder `app-proto`. It includes both a user inter
end
```
you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show
you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show.
### Run the automated tests
1. Go into the `app-proto` folder
2. Call `cargo test`
1. Go into the `app-proto` folder.
2. Call `cargo test`.
### Deploy the prototype
1. From the `app-proto` folder, call `trunk build --release`
- Building in [release mode](https://doc.rust-lang.org/cargo/reference/profiles.html#release) produces an executable which is smaller and often much faster, but harder to debug and more time-consuming to build
- If you want to stay in the top-level folder, you can call `trunk build --config app-proto --release` from there instead
1. From the `app-proto` folder, call `trunk build --release`.
- Building in [release mode](https://doc.rust-lang.org/cargo/reference/profiles.html#release) produces an executable which is smaller and often much faster, but harder to debug and more time-consuming to build.
- If you want to stay in the top-level folder, you can call `trunk build --config app-proto --release` from there instead.
2. Use `sh` to run the packaging script `tools/package-for-deployment.sh`.
- The script is location-independent, so you can do this from anywhere in the dyna3 repository
- The script is location-independent, so you can do this from anywhere in the dyna3 repository.
- The call from the top level of the repository is:
```bash
sh tools/package-for-deployment.sh
```
- This will overwrite or replace the files in `deploy/dyna3`
- This will overwrite or replace the files in `deploy/dyna3`.
3. Put the contents of `deploy/dyna3` in the folder on your server that the prototype will be served from.
- To simplify uploading, you might want to combine these files into an archive called `deploy/dyna3.zip`. Git has been set to ignore this path
- To simplify uploading, you might want to combine these files into an archive called `deploy/dyna3.zip`. Git has been set to ignore this path.

21
app-proto/Cargo.lock generated
View file

@ -255,6 +255,7 @@ dependencies = [
"charming",
"console_error_panic_hook",
"dyna3",
"enum-iterator",
"itertools",
"js-sys",
"lazy_static",
@ -271,6 +272,26 @@ version = "1.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60b1af1c220855b6ceac025d3f6ecdd2b7c4894bfe9cd9bda4fbb4bc7c0d4cf0"
[[package]]
name = "enum-iterator"
version = "2.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a4549325971814bda7a44061bf3fe7e487d447cba01e4220a4b454d630d7a016"
dependencies = [
"enum-iterator-derive",
]
[[package]]
name = "enum-iterator-derive"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "685adfa4d6f3d765a26bc5dbc936577de9abf756c1feeb3089b01dd395034842"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "equivalent"
version = "1.0.1"

View file

@ -10,6 +10,7 @@ default = ["console_error_panic_hook"]
dev = []
[dependencies]
enum-iterator = "2.3.0"
itertools = "0.13.0"
js-sys = "0.3.70"
lazy_static = "1.5.0"

View file

@ -1,10 +1,11 @@
use enum_iterator::{all, Sequence};
use nalgebra::{DMatrix, DVector, DVectorView};
use std::{
cell::Cell,
cmp::Ordering,
collections::{BTreeMap, BTreeSet},
fmt,
fmt::{Debug, Formatter},
fmt::{Debug, Display, Formatter},
hash::{Hash, Hasher},
rc::Rc,
sync::{atomic, atomic::AtomicU64},
@ -26,6 +27,7 @@ use crate::{
ConfigSubspace,
ConstraintProblem,
DescentHistory,
MatrixEntry,
Realization,
},
specified::SpecifiedValue,
@ -84,6 +86,14 @@ impl Ord for dyn Serial {
}
}
// Small helper function to generate consistent errors when there
// are indexing issues in a ProblemPoser
fn indexing_error(item: &str, name: &str, actor: &str) -> String {
format!(
"{item} \"{name}\" must be indexed before {actor} writes problem data"
)
}
pub trait ProblemPoser {
fn pose(&self, problem: &mut ConstraintProblem);
}
@ -125,8 +135,8 @@ pub trait Element: Serial + ProblemPoser + DisplayItem {
}
impl Debug for dyn Element {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
self.id().fmt(f)
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(&self.id(), f)
}
}
@ -249,8 +259,7 @@ impl Serial for Sphere {
impl ProblemPoser for Sphere {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Sphere \"{}\" should be indexed before writing problem data", self.id).as_str()
);
indexing_error("Sphere", &self.id, "it").as_str());
problem.gram.push_sym(index, index, 1.0);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
@ -269,6 +278,7 @@ pub struct Point {
impl Point {
const WEIGHT_COMPONENT: usize = 3;
const NORM_COMPONENT: usize = 4;
pub fn new(
id: String,
@ -302,6 +312,15 @@ impl Element for Point {
point(0.0, 0.0, 0.0),
)
}
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
all::<Axis>()
.map(|axis| {
Rc::new(PointCoordinateRegulator::new(self.clone(), axis))
as Rc::<dyn Regulator>
})
.collect()
}
fn id(&self) -> &String {
&self.id
@ -345,8 +364,7 @@ impl Serial for Point {
impl ProblemPoser for Point {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Point \"{}\" should be indexed before writing problem data", self.id).as_str()
);
indexing_error("Point", &self.id, "it").as_str());
problem.gram.push_sym(index, index, 0.0);
problem.frozen.push(Self::WEIGHT_COMPONENT, index, 0.5);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
@ -436,8 +454,8 @@ impl ProblemPoser for InversiveDistanceRegulator {
if let Some(val) = set_pt.value {
let [row, col] = self.subjects.each_ref().map(
|subj| subj.column_index().expect(
"Subjects should be indexed before inversive distance regulator writes problem data"
)
indexing_error("Subject", subj.id(),
"inversive distance regulator").as_str())
);
problem.gram.push_sym(row, col, val);
}
@ -446,14 +464,14 @@ impl ProblemPoser for InversiveDistanceRegulator {
}
pub struct HalfCurvatureRegulator {
pub subject: Rc<dyn Element>,
pub subject: Rc<Sphere>,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64,
}
impl HalfCurvatureRegulator {
pub fn new(subject: Rc<dyn Element>) -> Self {
pub fn new(subject: Rc<Sphere>) -> Self {
let measurement = subject.representation().map(
|rep| rep[Sphere::CURVATURE_COMPONENT]
);
@ -490,14 +508,85 @@ impl ProblemPoser for HalfCurvatureRegulator {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = self.subject.column_index().expect(
"Subject should be indexed before half-curvature regulator writes problem data"
);
indexing_error("Subject", &self.subject.id,
"half-curvature regulator").as_str());
problem.frozen.push(Sphere::CURVATURE_COMPONENT, col, val);
}
});
}
}
#[derive(Clone, Copy, Sequence)]
pub enum Axis { X = 0, Y = 1, Z = 2 }
impl Axis {
fn name(&self) -> &'static str {
match self { Axis::X => "X", Axis::Y => "Y", Axis::Z => "Z" }
}
}
impl Display for Axis {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self.name())
}
}
pub struct PointCoordinateRegulator {
pub subject: Rc<Point>,
pub axis: Axis,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64
}
impl PointCoordinateRegulator {
pub fn new(subject: Rc<Point>, axis: Axis) -> Self {
let measurement = subject.representation().map(
move |rep| rep[axis as usize]
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
Self { subject, axis, measurement, set_point, serial: Self::next_serial() }
}
}
impl Serial for PointCoordinateRegulator {
fn serial(&self) -> u64 { self.serial }
}
impl Regulator for PointCoordinateRegulator {
fn subjects(&self) -> Vec<Rc<dyn Element>> { vec![self.subject.clone()] }
fn measurement(&self) -> ReadSignal<f64> { self.measurement }
fn set_point(&self) -> Signal<SpecifiedValue> { self.set_point }
}
impl ProblemPoser for PointCoordinateRegulator {
fn pose(&self, problem: &mut ConstraintProblem) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = self.subject.column_index().expect(
indexing_error("Subject", &self.subject.id,
"point-coordinate regulator").as_str());
problem.frozen.push(self.axis as usize, col, val);
// If all three of the subject's spatial coordinates have been
// frozen, then freeze its norm component:
let mut coords = [0.0; Axis::CARDINALITY];
let mut nset: usize = 0;
for &MatrixEntry {index, value} in &(problem.frozen) {
if index.1 == col && index.0 < Axis::CARDINALITY {
nset += 1;
coords[index.0] = value
}
}
if nset == Axis::CARDINALITY {
let [x, y, z] = coords;
problem.frozen.push(
Point::NORM_COMPONENT, col, point(x,y,z)[Point::NORM_COMPONENT]);
}
}
});
}
}
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> {
pub element: Rc<dyn Element>,
@ -698,6 +787,7 @@ impl Assembly {
/* DEBUG */
// log the Gram matrix
console_log!("Gram matrix:\n{}", problem.gram);
console_log!("Frozen entries:\n{}", problem.frozen);
/* DEBUG */
// log the initial configuration matrix
@ -857,7 +947,8 @@ mod tests {
use crate::engine;
#[test]
#[should_panic(expected = "Sphere \"sphere\" should be indexed before writing problem data")]
#[should_panic(expected =
"Sphere \"sphere\" must be indexed before it writes problem data")]
fn unindexed_element_test() {
let _ = create_root(|| {
let elt = Sphere::default("sphere".to_string(), 0);
@ -866,7 +957,8 @@ mod tests {
}
#[test]
#[should_panic(expected = "Subjects should be indexed before inversive distance regulator writes problem data")]
#[should_panic(expected = "Subject \"sphere1\" must be indexed before \
inversive distance regulator writes problem data")]
fn unindexed_subject_test_inversive_distance() {
let _ = create_root(|| {
let subjects = [0, 1].map(
@ -927,4 +1019,4 @@ mod tests {
assert!((final_half_curv / INITIAL_HALF_CURV - 1.0).abs() < DRIFT_TOL);
});
}
}
}

View file

@ -9,6 +9,7 @@ use crate::{
Element,
HalfCurvatureRegulator,
InversiveDistanceRegulator,
PointCoordinateRegulator,
Regulator,
},
specified::SpecifiedValue
@ -119,6 +120,20 @@ impl OutlineItem for HalfCurvatureRegulator {
}
}
impl OutlineItem for PointCoordinateRegulator {
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
let name = format!("{} coordinate", self.axis);
view! {
li(class = "regulator") {
div(class = "regulator-label") // for spacing
div(class = "regulator-type") { (name) }
RegulatorInput(regulator = self)
div(class = "status")
}
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(element: Rc<dyn Element>) -> View {

View file

@ -52,8 +52,8 @@ pub fn project_point_to_normalized(rep: &mut DVector<f64>) {
// --- partial matrices ---
pub struct MatrixEntry {
index: (usize, usize),
value: f64,
pub index: (usize, usize),
pub value: f64,
}
pub struct PartialMatrix(Vec<MatrixEntry>);