Commit graph

13 commits

Author SHA1 Message Date
Aaron Fenyes
fef4127f69 Only sync regulator inputs on change
This lets us infer a regulator's role from whether it has a set point
and what text specifies the set point.
2025-02-17 14:01:27 -08:00
Aaron Fenyes
b3e4e902f3 Rename Regulator fields 2025-02-12 11:55:45 -08:00
Aaron Fenyes
24139ad5e9 Rename observables to regulators 2025-02-12 11:35:07 -08:00
Aaron Fenyes
de7122d871 Label observable type
Right now, there's only one type of observable, so the label can be
hard-coded.
2025-02-12 10:37:48 -08:00
Aaron Fenyes
af2724f934 Rename ObservableRole variants
Also rename corresponding CSS classes and add methods to check roles.
2025-02-10 00:16:36 -08:00
Aaron Fenyes
677ef47544 Rename constraints to observables 2025-02-10 00:16:36 -08:00
Aaron Fenyes
fb8e391587 Generalize constraints to observables 2025-02-10 00:08:32 -08:00
46324fecc6 Use workaround to keep representation coordinates in order (#46)
This fixes #41 by rendering representation vectors with a static list view rather than an `Indexed` view. The Sycamore maintainer has confirmed that `Indexed` is always supposed to display list items in order, so I think #41 is likely caused by a bug in `Indexed`. We should consider reverting this pull request when the bug is fixed.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#46
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-02-08 06:08:36 +00:00
b490c8707f Click the display to select spheres (#25)
On the incoming branch, you can select a sphere by clicking it in the display. Holding *shift* while clicking enables multiple selection. These controls match the ones already implemented in the outline view.

Since the selection routine is now used in multiple places, the incoming branch factors it out into the `AppState::select` method.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#25
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-27 05:02:06 +00:00
e917272c60 Give each element a serial number (#22)
Give each `Element` a serial number, which identifies it uniquely. The serial number is assigned by the `Element::new` constructor.

Because disallows potentially unsafe global state (at least without explicit `unsafe` blocks), the next serial number is stored in a thread-safe static atomic variable (`assembly::NEXT_ELEMENT_SERIAL`), as suggested in [this StackOverflow answer](https://stackoverflow.com/a/32936288). Since the overhead for keeping track of memory ordering should be minimal, we're using the strongest available ordering: [sequentially consistent](https://marabos.nl/atomics/memory-ordering.html#seqcst).

Resolves #20.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#22
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-22 02:25:10 +00:00
65cee1ecc2 Clean up the outline view (#19)
Clean up the source code and interface of the outline view. In addition, [fix a bug](commit/6e42681b719d7ec97c4225ca321225979bf87b56) that could cause `Assembly::realize` to react to itself under certain circumstances. Those circumstances arose, making the bug noticeable, while this branch was being written.

#### Source code

- Modularize the `Outline` component into smaller components.
- Switch from static iteration to dynamic Sycamore lists. This reduces the amount of re-rendering that happens when an element or constraint changes. It also allows constraint details to stay open or closed during constraint updates, rather than resetting to closed.
- Make `Element::index` private, as discussed [here](pulls/15#issuecomment-1816).

#### Interface

- Make constraints editable, updating the assembly realization on input. Flag constraints where the Lorentz product value doesn't parse.
- Round element vector coordinates to prevent the displayed strings from overlapping.

Note that issue #20 was created by this PR, but it will be addressed shortly.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#19
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-15 03:32:47 +00:00
707618cdd3 Integrate engine into application prototype (#15)
Port the engine prototype to Rust, integrate it into the application prototype, and use it to enforce the constraints.

### Features

To see the engine in action:

1. Add a constraint by shift-clicking to select two spheres in the outline view and then hitting the 🔗 button
2. Click a summary arrow to see the outline item for the new constraint
2. Set the constraint's Lorentz product by entering a value in the text field at the right end of the outline item
   * *The display should update as soon as you press* Enter *or focus away from the text field*

The checkbox at the left end of a constraint outline item controls whether the constraint is active. Activating a constraint triggers a solution update. (Deactivating a constraint doesn't, since the remaining active constraints are still satisfied.)

### Precision

The Julia prototype of the engine uses a generic scalar type, so you can pass in any type the linear algebra functions are implemented for. The examples use the [adjustable-precision](https://docs.julialang.org/en/v1/base/numbers/#Base.MPFR.setprecision) `BigFloat` type.

In the Rust port of the engine, the scalar type is currently fixed at `f64`. Switching to generic scalars shouldn't be too hard, but I haven't looked into [which other types](https://www.nalgebra.org/docs/user_guide/generic_programming) the linear algebra functions are implemented for.

### Testing

To confirm quantitatively that the Rust port of the engine is working, you can go to the `app-proto` folder and:

* Run some automated tests by calling `cargo test`.
* Inspect the optimization process in a few examples calling the `run-examples` script. The first example that prints is the same as the Irisawa hexlet example from the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then

  ```
  include("irisawa-hexlet.jl")
  for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
    println(rpad(step-1, 4), " | ", scaled_loss)
  end
  ```

  you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show.

### A small engine revision

The Rust port of the engine improves on the Julia prototype in one part of the constraint-solving routine: projecting the Hessian onto the subspace where the frozen entries stay constant. The Julia prototype does this by removing the rows and columns of the Hessian that correspond to the frozen entries, finding the Newton step from the resulting "compressed" Hessian, and then adding zero entries to the Newton step in the appropriate places. The Rust port instead replaces each frozen row and column with its corresponding standard unit vector, avoiding the finicky compressing and decompressing steps.

To confirm that this version of the constraint-solving routine works the same as the original, I implemented it in Julia as `realize_gram_alt_proj`. The solutions we get from this routine match the ones we get from the original `realize_gram` to very high precision, and in the simplest examples (`sphere-in-tetrahedron.jl` and `tetrahedron-radius-ratio.jl`), the descent paths also match to very high precision. In a more complicated example (`irisawa-hexlet.jl`), the descent paths diverge about a quarter of the way into the search, even though they end up in the same place.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#15
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-12 00:46:16 +00:00
86fa682b31 feat: Application prototype (#14)
Creates a prototype user interface for dyna3 in the `app-proto` folder. The interface is dynamically constructed using [Sycamore](https://sycamore.dev).

The prototype includes:

  * An application state model (the `AppState` type)
    * A constraint problem model (the `Assembly` type), used in the application state
  * Two views
    * A 3D rendering of the assembly (the `Display` component)
    * A list of elements and constraints (the `Outline` component)

The following features confirm that the views can reflect and send input to the model:

  * You can select elements by clicking and shift-clicking them in the outline. The selected elements are highlighted in the display.
  * You can add elements using a button above the outline. The new elements appear in the display.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#14
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-10-21 23:38:27 +00:00