feat: Engine diagnostics (#92)
All checks were successful
/ test (push) Successful in 3m37s

Adds a `Diagnostics` component that shows the following diagnostics from the last realization:

- Confirmation of success or a short description of what failed.
- The value of the loss function at each step.
- The spectrum of the Hessian at each step.

The loss and spectrum plots are shown on switchable panels.

Also includes some refactoring/renaming of existing code.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: #92
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
Vectornaut 2025-07-21 04:18:49 +00:00 committed by Glen Whitney
parent 4cb3262555
commit 5864017e6f
17 changed files with 1120 additions and 150 deletions

View file

@ -1,30 +1,32 @@
#[path = "common/print.rs"]
mod print;
use nalgebra::{DMatrix, DVector};
use dyna3::engine::{Q, examples::realize_kaleidocycle};
use dyna3::engine::{ConfigNeighborhood, examples::realize_kaleidocycle};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, tangent, success, history) = realize_kaleidocycle(SCALED_TOL);
print!("Completed Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
let realization = realize_kaleidocycle(SCALED_TOL);
print::title("Kaleidocycle");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, nbhd: tangent }) = realization.result {
// print the completed Gram matrix and the realized configuration
print::gram_matrix(&config);
print::config(&config);
// find the kaleidocycle's twist motion by projecting onto the tangent
// space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1)
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
println!("\nTwist motion:{}", (normalization * twist_motion).to_string().trim_end());
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
// find the kaleidocycle's twist motion by projecting onto the tangent space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1)
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
print!("Twist motion:{}", normalization * twist_motion);
}