feat: Curvature regulators (#80)
All checks were successful
/ test (push) Successful in 2m21s
All checks were successful
/ test (push) Successful in 2m21s
Prior to this commit, there's only one kind of regulator: the one that regulates the inversive distance between two spheres (or, more generally, the Lorentz product between two element representation vectors). Adds a new kind of regulator, which regulates the curvature of a sphere (issue #55). In the process, introduces a general framework based on new traits for organizing and sharing code between different kinds of regulators. Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo> Reviewed-on: #80 Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net> Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
parent
23ba5acad7
commit
360ce12d8b
6 changed files with 640 additions and 331 deletions
|
@ -35,9 +35,43 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6
|
|||
])
|
||||
}
|
||||
|
||||
// given a sphere's representation vector, change the sphere's half-curvature to
|
||||
// `half-curv` and then restore normalization by contracting the representation
|
||||
// vector toward the curvature axis
|
||||
pub fn change_half_curvature(rep: &mut DVector<f64>, half_curv: f64) {
|
||||
// set the sphere's half-curvature to the desired value
|
||||
rep[3] = half_curv;
|
||||
|
||||
// restore normalization by contracting toward the curvature axis
|
||||
const SIZE_THRESHOLD: f64 = 1e-9;
|
||||
let half_q_lt = -2.0 * half_curv * rep[4];
|
||||
let half_q_lt_sq = half_q_lt * half_q_lt;
|
||||
let mut spatial = rep.fixed_rows_mut::<3>(0);
|
||||
let q_sp = spatial.norm_squared();
|
||||
if q_sp < SIZE_THRESHOLD && half_q_lt_sq < SIZE_THRESHOLD {
|
||||
spatial.copy_from_slice(
|
||||
&[0.0, 0.0, (1.0 - 2.0 * half_q_lt).sqrt()]
|
||||
);
|
||||
} else {
|
||||
let scaling = half_q_lt + (q_sp + half_q_lt_sq).sqrt();
|
||||
spatial.scale_mut(1.0 / scaling);
|
||||
rep[4] /= scaling;
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
// verify normalization
|
||||
let rep_for_debug = rep.clone();
|
||||
console::log_1(&JsValue::from(
|
||||
format!(
|
||||
"Sphere self-product after curvature change: {}",
|
||||
rep_for_debug.dot(&(&*Q * &rep_for_debug))
|
||||
)
|
||||
));
|
||||
}
|
||||
|
||||
// --- partial matrices ---
|
||||
|
||||
struct MatrixEntry {
|
||||
pub struct MatrixEntry {
|
||||
index: (usize, usize),
|
||||
value: f64
|
||||
}
|
||||
|
@ -49,42 +83,72 @@ impl PartialMatrix {
|
|||
PartialMatrix(Vec::<MatrixEntry>::new())
|
||||
}
|
||||
|
||||
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
|
||||
pub fn push(&mut self, row: usize, col: usize, value: f64) {
|
||||
let PartialMatrix(entries) = self;
|
||||
entries.push(MatrixEntry { index: (row, col), value: value });
|
||||
}
|
||||
|
||||
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
|
||||
self.push(row, col, value);
|
||||
if row != col {
|
||||
entries.push(MatrixEntry { index: (col, row), value: value });
|
||||
self.push(col, row, value);
|
||||
}
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
pub fn log_to_console(&self) {
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
|
||||
console::log_1(&JsValue::from(ent_str.as_str()));
|
||||
for &MatrixEntry { index: (row, col), value } in self {
|
||||
console::log_1(&JsValue::from(
|
||||
format!(" {} {} {}", row, col, value)
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
fn freeze(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = a.clone();
|
||||
for &MatrixEntry { index, value } in self {
|
||||
result[index] = value;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
result[ent.index] = a[ent.index];
|
||||
for &MatrixEntry { index, .. } in self {
|
||||
result[index] = a[index];
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
result[ent.index] = ent.value - rhs[ent.index];
|
||||
for &MatrixEntry { index, value } in self {
|
||||
result[index] = value - rhs[index];
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoIterator for PartialMatrix {
|
||||
type Item = MatrixEntry;
|
||||
type IntoIter = std::vec::IntoIter<Self::Item>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
let PartialMatrix(entries) = self;
|
||||
entries.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a PartialMatrix {
|
||||
type Item = &'a MatrixEntry;
|
||||
type IntoIter = std::slice::Iter<'a, MatrixEntry>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
let PartialMatrix(entries) = self;
|
||||
entries.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
// --- configuration subspaces ---
|
||||
|
||||
#[derive(Clone)]
|
||||
|
@ -195,6 +259,34 @@ impl DescentHistory {
|
|||
}
|
||||
}
|
||||
|
||||
// --- constraint problems ---
|
||||
|
||||
pub struct ConstraintProblem {
|
||||
pub gram: PartialMatrix,
|
||||
pub frozen: PartialMatrix,
|
||||
pub guess: DMatrix<f64>,
|
||||
}
|
||||
|
||||
impl ConstraintProblem {
|
||||
pub fn new(element_count: usize) -> ConstraintProblem {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
ConstraintProblem {
|
||||
gram: PartialMatrix::new(),
|
||||
frozen: PartialMatrix::new(),
|
||||
guess: DMatrix::<f64>::zeros(ELEMENT_DIM, element_count)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "dev")]
|
||||
pub fn from_guess(guess_columns: &[DVector<f64>]) -> ConstraintProblem {
|
||||
ConstraintProblem {
|
||||
gram: PartialMatrix::new(),
|
||||
frozen: PartialMatrix::new(),
|
||||
guess: DMatrix::from_columns(guess_columns)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- gram matrix realization ---
|
||||
|
||||
// the Lorentz form
|
||||
|
@ -286,12 +378,12 @@ fn seek_better_config(
|
|||
None
|
||||
}
|
||||
|
||||
// seek a matrix `config` for which `config' * Q * config` matches the partial
|
||||
// matrix `gram`. use gradient descent starting from `guess`
|
||||
// seek a matrix `config` that matches the partial matrix `problem.frozen` and
|
||||
// has `config' * Q * config` matching the partial matrix `problem.gram`. start
|
||||
// at `problem.guess`, set the frozen entries to their desired values, and then
|
||||
// use a regularized Newton's method to seek the desired Gram matrix
|
||||
pub fn realize_gram(
|
||||
gram: &PartialMatrix,
|
||||
guess: DMatrix<f64>,
|
||||
frozen: &[(usize, usize)],
|
||||
problem: &ConstraintProblem,
|
||||
scaled_tol: f64,
|
||||
min_efficiency: f64,
|
||||
backoff: f64,
|
||||
|
@ -299,6 +391,11 @@ pub fn realize_gram(
|
|||
max_descent_steps: i32,
|
||||
max_backoff_steps: i32
|
||||
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
// destructure the problem data
|
||||
let ConstraintProblem {
|
||||
gram, guess, frozen
|
||||
} = problem;
|
||||
|
||||
// start the descent history
|
||||
let mut history = DescentHistory::new();
|
||||
|
||||
|
@ -313,11 +410,11 @@ pub fn realize_gram(
|
|||
|
||||
// convert the frozen indices to stacked format
|
||||
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|
||||
|index| index.1*element_dim + index.0
|
||||
|MatrixEntry { index: (row, col), .. }| col*element_dim + row
|
||||
).collect();
|
||||
|
||||
// use Newton's method with backtracking and gradient descent backup
|
||||
let mut state = SearchState::from_config(gram, guess);
|
||||
// use a regularized Newton's method with backtracking
|
||||
let mut state = SearchState::from_config(gram, frozen.freeze(guess));
|
||||
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
|
||||
for _ in 0..max_descent_steps {
|
||||
// find the negative gradient of the loss function
|
||||
|
@ -415,7 +512,7 @@ pub fn realize_gram(
|
|||
|
||||
#[cfg(feature = "dev")]
|
||||
pub mod examples {
|
||||
use std::{array, f64::consts::PI};
|
||||
use std::f64::consts::PI;
|
||||
|
||||
use super::*;
|
||||
|
||||
|
@ -428,35 +525,7 @@ pub mod examples {
|
|||
// https://www.nippon.com/en/japan-topics/c12801/
|
||||
//
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for s in 0..9 {
|
||||
// each sphere is represented by a spacelike vector
|
||||
gram_to_be.push_sym(s, s, 1.0);
|
||||
|
||||
// the circumscribing sphere is tangent to all of the other
|
||||
// spheres, with matching orientation
|
||||
if s > 0 {
|
||||
gram_to_be.push_sym(0, s, 1.0);
|
||||
}
|
||||
|
||||
if s > 2 {
|
||||
// each chain sphere is tangent to the "sun" and "moon"
|
||||
// spheres, with opposing orientation
|
||||
for n in 1..3 {
|
||||
gram_to_be.push_sym(s, n, -1.0);
|
||||
}
|
||||
|
||||
// each chain sphere is tangent to the next chain sphere,
|
||||
// with opposing orientation
|
||||
let s_next = 3 + (s-2) % 6;
|
||||
gram_to_be.push_sym(s, s_next, -1.0);
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
|
||||
let guess = DMatrix::from_columns(
|
||||
let mut problem = ConstraintProblem::from_guess(
|
||||
[
|
||||
sphere(0.0, 0.0, 0.0, 15.0),
|
||||
sphere(0.0, 0.0, -9.0, 5.0),
|
||||
|
@ -471,42 +540,45 @@ pub mod examples {
|
|||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
for s in 0..9 {
|
||||
// each sphere is represented by a spacelike vector
|
||||
problem.gram.push_sym(s, s, 1.0);
|
||||
|
||||
// the circumscribing sphere is tangent to all of the other
|
||||
// spheres, with matching orientation
|
||||
if s > 0 {
|
||||
problem.gram.push_sym(0, s, 1.0);
|
||||
}
|
||||
|
||||
if s > 2 {
|
||||
// each chain sphere is tangent to the "sun" and "moon"
|
||||
// spheres, with opposing orientation
|
||||
for n in 1..3 {
|
||||
problem.gram.push_sym(s, n, -1.0);
|
||||
}
|
||||
|
||||
// each chain sphere is tangent to the next chain sphere,
|
||||
// with opposing orientation
|
||||
let s_next = 3 + (s-2) % 6;
|
||||
problem.gram.push_sym(s, s_next, -1.0);
|
||||
}
|
||||
}
|
||||
|
||||
// the frozen entries fix the radii of the circumscribing sphere, the
|
||||
// "sun" and "moon" spheres, and one of the chain spheres
|
||||
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
|
||||
for k in 0..4 {
|
||||
problem.frozen.push(3, k, problem.guess[(3, k)]);
|
||||
}
|
||||
|
||||
realize_gram(
|
||||
&gram, guess, &frozen,
|
||||
scaled_tol, 0.5, 0.9, 1.1, 200, 110
|
||||
)
|
||||
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
|
||||
}
|
||||
|
||||
// set up a kaleidocycle, made of points with fixed distances between them,
|
||||
// and find its tangent space
|
||||
pub fn realize_kaleidocycle(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
const N_POINTS: usize = 12;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for block in (0..N_POINTS).step_by(2) {
|
||||
let block_next = (block + 2) % N_POINTS;
|
||||
for j in 0..2 {
|
||||
// diagonal and hinge edges
|
||||
for k in j..2 {
|
||||
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
|
||||
}
|
||||
|
||||
// non-hinge edges
|
||||
for k in 0..2 {
|
||||
gram_to_be.push_sym(block + j, block_next + k, -0.625);
|
||||
}
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
|
||||
let guess = {
|
||||
const N_HINGES: usize = 6;
|
||||
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
|
||||
const N_HINGES: usize = 6;
|
||||
let mut problem = ConstraintProblem::from_guess(
|
||||
(0..N_HINGES).step_by(2).flat_map(
|
||||
|n| {
|
||||
let ang_hor = (n as f64) * PI/3.0;
|
||||
let ang_vert = ((n + 1) as f64) * PI/3.0;
|
||||
|
@ -519,16 +591,30 @@ pub mod examples {
|
|||
point(x_vert, y_vert, 0.5)
|
||||
]
|
||||
}
|
||||
).collect::<Vec<_>>();
|
||||
DMatrix::from_columns(&guess_elts)
|
||||
};
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
|
||||
const N_POINTS: usize = 2 * N_HINGES;
|
||||
for block in (0..N_POINTS).step_by(2) {
|
||||
let block_next = (block + 2) % N_POINTS;
|
||||
for j in 0..2 {
|
||||
// diagonal and hinge edges
|
||||
for k in j..2 {
|
||||
problem.gram.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
|
||||
}
|
||||
|
||||
// non-hinge edges
|
||||
for k in 0..2 {
|
||||
problem.gram.push_sym(block + j, block_next + k, -0.625);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
realize_gram(
|
||||
&gram, guess, &frozen,
|
||||
scaled_tol, 0.5, 0.9, 1.1, 200, 110
|
||||
)
|
||||
for k in 0..N_POINTS {
|
||||
problem.frozen.push(3, k, problem.guess[(3, k)])
|
||||
}
|
||||
|
||||
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -539,6 +625,25 @@ mod tests {
|
|||
|
||||
use super::{*, examples::*};
|
||||
|
||||
#[test]
|
||||
fn freeze_test() {
|
||||
let frozen = PartialMatrix(vec![
|
||||
MatrixEntry { index: (0, 0), value: 14.0 },
|
||||
MatrixEntry { index: (0, 2), value: 28.0 },
|
||||
MatrixEntry { index: (1, 1), value: 42.0 },
|
||||
MatrixEntry { index: (1, 2), value: 49.0 }
|
||||
]);
|
||||
let config = DMatrix::<f64>::from_row_slice(2, 3, &[
|
||||
1.0, 2.0, 3.0,
|
||||
4.0, 5.0, 6.0
|
||||
]);
|
||||
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
|
||||
14.0, 2.0, 28.0,
|
||||
4.0, 42.0, 49.0
|
||||
]);
|
||||
assert_eq!(frozen.freeze(&config), expected_result);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sub_proj_test() {
|
||||
let target = PartialMatrix(vec![
|
||||
|
@ -560,18 +665,12 @@ mod tests {
|
|||
|
||||
#[test]
|
||||
fn zero_loss_test() {
|
||||
let gram = PartialMatrix({
|
||||
let mut entries = Vec::<MatrixEntry>::new();
|
||||
for j in 0..3 {
|
||||
for k in 0..3 {
|
||||
entries.push(MatrixEntry {
|
||||
index: (j, k),
|
||||
value: if j == k { 1.0 } else { -1.0 }
|
||||
});
|
||||
}
|
||||
let mut gram = PartialMatrix::new();
|
||||
for j in 0..3 {
|
||||
for k in 0..3 {
|
||||
gram.push(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
entries
|
||||
});
|
||||
}
|
||||
let config = {
|
||||
let a = 0.75_f64.sqrt();
|
||||
DMatrix::from_columns(&[
|
||||
|
@ -584,37 +683,33 @@ mod tests {
|
|||
assert!(state.loss.abs() < f64::EPSILON);
|
||||
}
|
||||
|
||||
/* TO DO */
|
||||
// at the frozen indices, the optimization steps should have exact zeros,
|
||||
// and the realized configuration should match the initial guess
|
||||
// and the realized configuration should have the desired values
|
||||
#[test]
|
||||
fn frozen_entry_test() {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..2 {
|
||||
for k in j..2 {
|
||||
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
let mut problem = ConstraintProblem::from_guess(&[
|
||||
point(0.0, 0.0, 2.0),
|
||||
sphere(0.0, 0.0, 0.0, 1.0)
|
||||
sphere(0.0, 0.0, 0.0, 0.95)
|
||||
]);
|
||||
let frozen = [(3, 0), (3, 1)];
|
||||
println!();
|
||||
for j in 0..2 {
|
||||
for k in j..2 {
|
||||
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
|
||||
problem.frozen.push(3, 1, 0.5);
|
||||
let (config, _, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(success, true);
|
||||
for base_step in history.base_step.into_iter() {
|
||||
for index in frozen {
|
||||
for &MatrixEntry { index, .. } in &problem.frozen {
|
||||
assert_eq!(base_step[index], 0.0);
|
||||
}
|
||||
}
|
||||
for index in frozen {
|
||||
assert_eq!(config[index], guess[index]);
|
||||
for MatrixEntry { index, value } in problem.frozen {
|
||||
assert_eq!(config[index], value);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -635,34 +730,32 @@ mod tests {
|
|||
#[test]
|
||||
fn tangent_test_three_spheres() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..3 {
|
||||
for k in j..3 {
|
||||
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
let mut problem = ConstraintProblem::from_guess(&[
|
||||
sphere(0.0, 0.0, 0.0, -2.0),
|
||||
sphere(0.0, 0.0, 1.0, 1.0),
|
||||
sphere(0.0, 0.0, -1.0, 1.0)
|
||||
]);
|
||||
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
|
||||
for j in 0..3 {
|
||||
for k in j..3 {
|
||||
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
}
|
||||
for n in 0..ELEMENT_DIM {
|
||||
problem.frozen.push(n, 0, problem.guess[(n, 0)]);
|
||||
}
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
&problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(config, guess);
|
||||
assert_eq!(config, problem.guess);
|
||||
assert_eq!(success, true);
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
// list some motions that should form a basis for the tangent space of
|
||||
// the solution variety
|
||||
const UNIFORM_DIM: usize = 4;
|
||||
let element_dim = guess.nrows();
|
||||
let assembly_dim = guess.ncols();
|
||||
let element_dim = problem.guess.nrows();
|
||||
let assembly_dim = problem.guess.ncols();
|
||||
let tangent_motions_unif = vec![
|
||||
basis_matrix((0, 1), UNIFORM_DIM, assembly_dim),
|
||||
basis_matrix((1, 1), UNIFORM_DIM, assembly_dim),
|
||||
|
@ -805,22 +898,17 @@ mod tests {
|
|||
fn proj_equivar_test() {
|
||||
// find a pair of spheres that meet at 120°
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
gram_to_be.push_sym(0, 0, 1.0);
|
||||
gram_to_be.push_sym(1, 1, 1.0);
|
||||
gram_to_be.push_sym(0, 1, 0.5);
|
||||
gram_to_be
|
||||
};
|
||||
let guess_orig = DMatrix::from_columns(&[
|
||||
let mut problem_orig = ConstraintProblem::from_guess(&[
|
||||
sphere(0.0, 0.0, 0.5, 1.0),
|
||||
sphere(0.0, 0.0, -0.5, 1.0)
|
||||
]);
|
||||
problem_orig.gram.push_sym(0, 0, 1.0);
|
||||
problem_orig.gram.push_sym(1, 1, 1.0);
|
||||
problem_orig.gram.push_sym(0, 1, 0.5);
|
||||
let (config_orig, tangent_orig, success_orig, history_orig) = realize_gram(
|
||||
&gram, guess_orig.clone(), &[],
|
||||
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(config_orig, guess_orig);
|
||||
assert_eq!(config_orig, problem_orig.guess);
|
||||
assert_eq!(success_orig, true);
|
||||
assert_eq!(history_orig.scaled_loss.len(), 1);
|
||||
|
||||
|
@ -833,11 +921,15 @@ mod tests {
|
|||
sphere(-a, 0.0, 7.0 - a, 1.0)
|
||||
])
|
||||
};
|
||||
let problem_tfm = ConstraintProblem {
|
||||
gram: problem_orig.gram,
|
||||
guess: guess_tfm,
|
||||
frozen: problem_orig.frozen
|
||||
};
|
||||
let (config_tfm, tangent_tfm, success_tfm, history_tfm) = realize_gram(
|
||||
&gram, guess_tfm.clone(), &[],
|
||||
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(config_tfm, guess_tfm);
|
||||
assert_eq!(config_tfm, problem_tfm.guess);
|
||||
assert_eq!(success_tfm, true);
|
||||
assert_eq!(history_tfm.scaled_loss.len(), 1);
|
||||
|
||||
|
@ -869,7 +961,7 @@ mod tests {
|
|||
// the comparison tolerance because the transformation seems to
|
||||
// introduce some numerical error
|
||||
const SCALED_TOL_TFM: f64 = 1.0e-9;
|
||||
let tol_sq = ((guess_orig.nrows() * guess_orig.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
|
||||
let tol_sq = ((problem_orig.guess.nrows() * problem_orig.guess.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
|
||||
assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue