############################################################################# ## #W classes.gi Testing properties/varieties [loops] ## #H @(#)$Id: classes.gi, v 3.4.0 2017/10/26 gap Exp $ ## #Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary), #Y P. Vojtechovsky (University of Denver, USA) ## ############################################################################# ## ASSOCIATIVITY, COMMUTATIVITY AND GENERALIZATIONS ## ------------------------------------------------------------------------- # (PROG) IsAssociative is already implemented for magmas, but we provide # a new method based on sections. This new method is much faster for groups, # and a bit slower for nonassociative loops. InstallOtherMethod( IsAssociative, "for loops", [ IsLoop ], 0, function( Q ) local sLS, x, y; sLS := Set( LeftSection( Q ) ); for x in LeftSection( Q ) do for y in LeftSection( Q ) do if not x*y in sLS then return false; fi; od; od; return true; end); # implies InstallTrueMethod( IsExtraLoop, IsAssociative and IsLoop ); ############################################################################# ## #P IsCommutative( Q ) ## ## Returns true if is commutative. InstallMethod( IsCommutative, "for quasigroup", [ IsQuasigroup ], 20, # Need to beat GAP's library methods function( Q ) return LeftSection( Q ) = RightSection( Q ); end ); ############################################################################# ## #P IsPowerAssociative( Q ) ## ## Returns true if is a power associative quasigroup. InstallOtherMethod( IsPowerAssociative, "for quasigroup", [ IsQuasigroup ], function( Q ) local checked, x, S; checked := []; repeat x := Difference( Elements(Q), checked ); if IsEmpty( x ) then return true; fi; S := Subquasigroup( Q, [x[1]] ); if not IsAssociative( S ) then return false; fi; checked := Union( checked, Elements( S ) ); # S is a group, so every subquasigroup of S is a group until 0=1; end ); # implies InstallTrueMethod( HasTwosidedInverses, IsPowerAssociative and IsLoop ); ############################################################################# ## #P IsDiassociative( Q ) ## ## Returns true if is a diassociative quasigroup. InstallOtherMethod( IsDiassociative, "for quasigroup", [ IsQuasigroup ], function( Q ) local checked, all_pairs, x, S; checked := []; all_pairs := Combinations( PosInParent( Elements( Q ) ), 2 ); # it is faster to work with integers repeat x := Difference( all_pairs, checked ); if IsEmpty( x ) then return true; fi; S := Subquasigroup( Q, x[1] ); if not IsAssociative( S ) then return false; fi; checked := Union( checked, Combinations( PosInParent( Elements( S ) ), 2 ) ); until 0=1; end ); # implies InstallTrueMethod( IsPowerAlternative, IsDiassociative ); InstallTrueMethod( IsFlexible, IsDiassociative ); ############################################################################# ## INVERSE PROPERTIES ## ------------------------------------------------------------------------- ############################################################################# ## #P HasLeftInverseProperty( L ) ## ## Returns true if has the left inverse property. InstallMethod( HasLeftInverseProperty, "for loop", [ IsLoop ], function( L ) return ForAll( LeftSection( L ), a -> a^-1 in LeftSection( L ) ); end ); ############################################################################# ## #P HasRightInverseProperty( L ) ## ## Returns true if has the right inverse property. InstallMethod( HasRightInverseProperty, "for loop", [ IsLoop ], function( L ) return ForAll( RightSection( L ), a -> a^-1 in RightSection( L ) ); end ); ############################################################################# ## #P HasInverseProperty( L ) ## ## Returns true if has the inverse property. InstallMethod( HasInverseProperty, "for loop", [ IsLoop ], function( L ) return HasLeftInverseProperty( L ) and HasRightInverseProperty( L ); end ); ############################################################################# ## #P HasWeakInverseProperty( L ) ## ## Returns true if has the weak inverse property. InstallMethod( HasWeakInverseProperty, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> ForAll( L, y -> LeftInverse(x*y)*x=LeftInverse(y) )); end ); ############################################################################# ## #P HasTwosidedInverses( L ) ## ## Returns true if has two-sided inverses. InstallMethod( HasTwosidedInverses, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> LeftInverse( x ) = RightInverse( x ) ); end ); ############################################################################# ## #P HasAutomorphicInverseProperty( L ) ## ## Returns true if has the automorphic inverse property. InstallMethod( HasAutomorphicInverseProperty, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> ForAll( L, y -> LeftInverse( x*y ) = LeftInverse( x )*LeftInverse( y ) ) ); end ); ############################################################################# ## #P HasAntiautomorphicInverseProperty( L ) ## ## Returns true if has the antiautomorphic inverse property. InstallMethod( HasAntiautomorphicInverseProperty, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> ForAll( L, y -> LeftInverse( x*y ) = LeftInverse( y )*LeftInverse( x ) ) ); end ); # implies and is implied by (for inverse properties) InstallTrueMethod( HasAntiautomorphicInverseProperty, HasAutomorphicInverseProperty and IsCommutative ); InstallTrueMethod( HasAutomorphicInverseProperty, HasAntiautomorphicInverseProperty and IsCommutative ); InstallTrueMethod( HasLeftInverseProperty, HasInverseProperty ); InstallTrueMethod( HasRightInverseProperty, HasInverseProperty ); InstallTrueMethod( HasWeakInverseProperty, HasInverseProperty ); InstallTrueMethod( HasAntiautomorphicInverseProperty, HasInverseProperty ); InstallTrueMethod( HasTwosidedInverses, HasAntiautomorphicInverseProperty ); InstallTrueMethod( HasInverseProperty, HasLeftInverseProperty and IsCommutative ); InstallTrueMethod( HasInverseProperty, HasRightInverseProperty and IsCommutative ); InstallTrueMethod( HasInverseProperty, HasLeftInverseProperty and HasRightInverseProperty ); InstallTrueMethod( HasInverseProperty, HasLeftInverseProperty and HasWeakInverseProperty ); InstallTrueMethod( HasInverseProperty, HasRightInverseProperty and HasWeakInverseProperty ); InstallTrueMethod( HasInverseProperty, HasLeftInverseProperty and HasAntiautomorphicInverseProperty ); InstallTrueMethod( HasInverseProperty, HasRightInverseProperty and HasAntiautomorphicInverseProperty ); InstallTrueMethod( HasInverseProperty, HasWeakInverseProperty and HasAntiautomorphicInverseProperty ); InstallTrueMethod( HasTwosidedInverses, HasLeftInverseProperty ); InstallTrueMethod( HasTwosidedInverses, HasRightInverseProperty ); InstallTrueMethod( HasTwosidedInverses, IsFlexible and IsLoop ); ############################################################################# ## PROPERTIES OF QUASIGROUPS ## ------------------------------------------------------------------------- ############################################################################# ## #P IsSemisymmetric( Q ) ## ## Returns true if the quasigroup is semisymmetric, i.e., (xy)x=y. InstallMethod( IsSemisymmetric, "for quasigroup", [ IsQuasigroup ], function( Q ) return ForAll( Q, x -> LeftTranslation( Q, x ) * RightTranslation( Q, x ) = () ); end ); ############################################################################# ## #P IsTotallySymmetric( Q ) ## ## Returns true if the quasigroup is totally symmetric, i.e, ## commutative and semisymmetric. InstallMethod( IsTotallySymmetric, "for quasigroup", [ IsQuasigroup ], function( Q ) return IsCommutative( Q ) and IsSemisymmetric( Q ); end ); ############################################################################# ## #P IsIdempotent( Q ) ## ## Returns true if the quasigroup is idempotent, i.e., x*x=x. InstallMethod( IsIdempotent, "for quasigroup", [ IsQuasigroup ], function( Q ) return ForAll( Q, x -> x*x = x ); end ); ############################################################################# ## #P IsSteinerQuasigroup( Q ) ## ## Returns true if the quasigroup is a Steiner quasigroup, i.e., ## idempotent and totally symmetric. InstallMethod( IsSteinerQuasigroup, "for quasigroup", [ IsQuasigroup ], function( Q ) return IsIdempotent( Q ) and IsTotallySymmetric( Q ); end ); ############################################################################# ## #P IsUnipotent( Q ) ## ## Returns true if the quasigroup is unipotent, i.e., x*x=y*y. InstallMethod( IsUnipotent, "for quasigroup", [ IsQuasigroup ], function( Q ) local square; if IsLoop( Q ) then return IsIdempotent( Q ); fi; square := Elements( Q )[ 1 ]^2; return ForAll( Q, y -> y^2 = square ); end ); ############################################################################# ## #P IsLDistributive( Q ) ## ## Returns true if the quasigroup is left distributive. InstallOtherMethod( IsLDistributive, "for Quasigroup", [ IsQuasigroup ], function( Q ) # BETTER ALGORITHM LATER? local x, y, z; for x in Q do for y in Q do for z in Q do if not x*(y*z) = (x*y)*(x*z) then return false; fi; od; od; od; return true; end ); ############################################################################# ## #P IsRDistributive( Q ) ## ## Returns true if the quasigroup is right distributive. InstallOtherMethod( IsRDistributive, "for Quasigroup", [ IsQuasigroup ], function( Q ) # BETTER ALGORITHM LATER? local x, y, z; for x in Q do for y in Q do for z in Q do if not (x*y)*z = (x*z)*(y*z) then return false; fi; od; od; od; return true; end ); ############################################################################# ## #P IsEntropic( Q ) ## ## Returns true if the quasigroup is entropic. InstallMethod( IsEntropic, "for quasigroup", [ IsQuasigroup ], function( Q ) # BETTER ALGORITHM LATER? local x, y, z, w; for x in Q do for y in Q do for z in Q do for w in Q do if not (x*y)*(z*w) = (x*z)*(y*w) then return false; fi; od; od; od; od; return true; end ); ############################################################################# ## LOOPS OF BOL-MOUFANG ## ------------------------------------------------------------------------- ############################################################################# ## #P IsExtraLoop( L ) ## ## Returns true if is an extra loop. InstallMethod( IsExtraLoop, "for loop", [ IsLoop ], function( L ) return IsMoufangLoop( L ) and IsNuclearSquareLoop( L ); end ); # implies InstallTrueMethod( IsMoufangLoop, IsExtraLoop ); InstallTrueMethod( IsCLoop, IsExtraLoop ); # is implied by InstallTrueMethod( IsExtraLoop, IsMoufangLoop and IsLeftNuclearSquareLoop ); InstallTrueMethod( IsExtraLoop, IsMoufangLoop and IsMiddleNuclearSquareLoop ); InstallTrueMethod( IsExtraLoop, IsMoufangLoop and IsRightNuclearSquareLoop ); ############################################################################# ## #P IsMoufangLoop( L ) ## ## Returns true if is a Moufang loop. InstallMethod( IsMoufangLoop, "for loop", [ IsLoop ], function( L ) return IsLeftBolLoop( L ) and HasRightInverseProperty( L ); end ); # implies InstallTrueMethod( IsLeftBolLoop, IsMoufangLoop ); InstallTrueMethod( IsRightBolLoop, IsMoufangLoop ); InstallTrueMethod( IsDiassociative, IsMoufangLoop ); # is implied by InstallTrueMethod( IsMoufangLoop, IsLeftBolLoop and IsRightBolLoop ); ############################################################################# ## #P IsCLoop( L ) ## ## Returns true if is a C-loop. InstallMethod( IsCLoop, "for loop", [ IsLoop ], function( L ) return IsLCLoop( L ) and IsRCLoop( L ); end ); # implies InstallTrueMethod( IsLCLoop, IsCLoop ); InstallTrueMethod( IsRCLoop, IsCLoop ); InstallTrueMethod( IsDiassociative, IsCLoop and IsFlexible); # is implied by InstallTrueMethod( IsCLoop, IsLCLoop and IsRCLoop ); ############################################################################# ## #P IsLeftBolLoop( L ) ## ## Returns true if is a left Bol loop. InstallMethod( IsLeftBolLoop, "for loop", [ IsLoop ], function( L ) return ForAll( LeftSection( L ), a -> ForAll( LeftSection( L ), b -> a*b*a in LeftSection( L ) ) ); end ); # implies InstallTrueMethod( IsRightBolLoop, IsLeftBolLoop and IsCommutative ); InstallTrueMethod( IsLeftPowerAlternative, IsLeftBolLoop ); ############################################################################# ## #P IsRightBolLoop( L ) ## ## Returns true if is a right Bol loop. InstallMethod( IsRightBolLoop, "for loop", [ IsLoop ], function( L ) return ForAll( RightSection( L ), a -> ForAll( RightSection( L ), b -> a*b*a in RightSection( L ) ) ); end ); # implies InstallTrueMethod( IsLeftBolLoop, IsRightBolLoop and IsCommutative ); InstallTrueMethod( IsRightPowerAlternative, IsRightBolLoop ); ############################################################################# ## #P IsLCLoop( L ) ## ## Returns true if is an LC-loop. InstallMethod( IsLCLoop, "for loop", [ IsLoop ], function( L ) return ForAll( LeftSection( L ), a -> ForAll( RightSection( L ), b -> b^(-1)*a*a*b in LeftSection( L ) ) ); end ); # implies InstallTrueMethod( IsLeftPowerAlternative, IsLCLoop ); InstallTrueMethod( IsLeftNuclearSquareLoop, IsLCLoop ); InstallTrueMethod( IsMiddleNuclearSquareLoop, IsLCLoop ); InstallTrueMethod( IsRCLoop, IsLCLoop and IsCommutative ); ############################################################################# ## #P IsRCLoop( L ) ## ## Returns true if is an RC-loop. InstallMethod( IsRCLoop, "for loop", [ IsLoop ], function( L ) return ForAll( LeftSection( L ), a -> ForAll( RightSection( L ), b -> a^(-1)*b*b*a in RightSection( L ) ) ); end ); # implies InstallTrueMethod( IsRightPowerAlternative, IsRCLoop ); InstallTrueMethod( IsRightNuclearSquareLoop, IsRCLoop ); InstallTrueMethod( IsMiddleNuclearSquareLoop, IsRCLoop ); InstallTrueMethod( IsLCLoop, IsRCLoop and IsCommutative ); ############################################################################# ## #P IsLeftNuclearSquareLoop( L ) ## ## Returns true if is a left nuclear square loop. InstallMethod( IsLeftNuclearSquareLoop, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> x^2 in LeftNucleus( L ) ); end ); #implies InstallTrueMethod( IsRightNuclearSquareLoop, IsLeftNuclearSquareLoop and IsCommutative ); ############################################################################# ## #P IsMiddleNuclearSquareLoop( L ) ## ## Returns true if is a middle nuclear square loop. InstallMethod( IsMiddleNuclearSquareLoop, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> x^2 in MiddleNucleus( L ) ); end ); ############################################################################# ## #P IsRightNuclearSquareLoop( L ) ## ## Returns true if is a right nuclear square loop. InstallMethod( IsRightNuclearSquareLoop, "for loop", [ IsLoop ], function( L ) return ForAll( L, x -> x^2 in RightNucleus( L ) ); end ); # implies InstallTrueMethod( IsLeftNuclearSquareLoop, IsRightNuclearSquareLoop and IsCommutative ); ############################################################################# ## #P IsNuclearSquareLoop( L ) ## ## Returns true if is a nuclear square loop. InstallMethod( IsNuclearSquareLoop, "for loop", [ IsLoop ], function( L ) return IsLeftNuclearSquareLoop( L ) and IsRightNuclearSquareLoop( L ) and IsMiddleNuclearSquareLoop( L ); end ); # implies InstallTrueMethod( IsLeftNuclearSquareLoop, IsNuclearSquareLoop ); InstallTrueMethod( IsRightNuclearSquareLoop, IsNuclearSquareLoop ); InstallTrueMethod( IsMiddleNuclearSquareLoop, IsNuclearSquareLoop ); # is implied by InstallTrueMethod( IsNuclearSquareLoop, IsLeftNuclearSquareLoop and IsRightNuclearSquareLoop and IsMiddleNuclearSquareLoop ); ############################################################################# ## #P IsFlexible( Q ) ## ## Returns true if is a flexible quasigroup. InstallMethod( IsFlexible, "for quasigroup", [ IsQuasigroup ], function( Q ) local LS, RS; LS := LeftSection( Q ); RS := RightSection( Q ); return ForAll( [1..Size( Q )], i -> LS[ i ] * RS[ i ] = RS[ i ] * LS[ i ] ); end ); # is implied by InstallTrueMethod( IsFlexible, IsCommutative ); ############################################################################# ## #P IsLeftAlternative( Q ) ## ## Returns true if is a left alternative quasigroup. InstallMethod( IsLeftAlternative, "for quasigroup", [ IsQuasigroup], function( Q ) if IsLoop( Q ) then return ForAll( LeftSection( Q ), a -> a*a in LeftSection( Q ) ); fi; return ForAll( Q, x -> ForAll( Q, y -> x*(x*y) = (x*x)*y ) ); end ); # implies InstallTrueMethod( IsRightAlternative, IsLeftAlternative and IsCommutative ); ############################################################################# ## #P IsRightAlternative( Q ) ## ## Returns true if is a right alternative quasigroup. InstallMethod( IsRightAlternative, "for quasigroup", [ IsQuasigroup ], function( Q ) if IsLoop( Q ) then return ForAll( RightSection( Q ), a -> a*a in RightSection( Q ) ); fi; return ForAll( Q, x -> ForAll( Q, y -> (x*y)*y = x*(y*y) ) ); end ); # implies InstallTrueMethod( IsLeftAlternative, IsRightAlternative and IsCommutative ); ############################################################################# ## #P IsAlternative( Q ) ## ## Returns true if is an alternative quasigroup. InstallMethod( IsAlternative, "for quasigroup", [ IsQuasigroup ], function( Q ) return IsLeftAlternative( Q ) and IsRightAlternative( Q ); end ); # implies InstallTrueMethod( IsLeftAlternative, IsAlternative ); InstallTrueMethod( IsRightAlternative, IsAlternative ); # is implied by InstallTrueMethod( IsAlternative, IsLeftAlternative and IsRightAlternative ); ############################################################################# ## POWER ALTERNATIVE LOOPS ## ------------------------------------------------------------------------- ############################################################################# ## #P IsLeftPowerAlternative( L ) ## ## Returns true if is a left power alternative loop. InstallMethod( IsLeftPowerAlternative, "for loop", [ IsLoop ], function( L ) local i, M; if Size( L ) = 1 then return true; fi; for i in [ 2..Size( L )] do M := Subloop( L, [ Elements( L )[ i ] ]); if not Size( RelativeLeftMultiplicationGroup( L, M ) ) = Size( M ) then return false; fi; od; return true; end ); # implies InstallTrueMethod( IsLeftAlternative, IsLeftPowerAlternative ); InstallTrueMethod( HasLeftInverseProperty, IsLeftPowerAlternative ); InstallTrueMethod( IsPowerAssociative, IsLeftPowerAlternative ); ############################################################################# ## #P IsRightPowerAlternative( L ) ## ## Returns true if is a right power alternative loop. InstallMethod( IsRightPowerAlternative, "for loop", [ IsLoop ], function( L ) local i, M; if Size( L ) = 1 then return true; fi; for i in [ 2..Size( L ) ] do M := Subloop( L, [ Elements( L )[ i ] ] ); if not Size( RelativeRightMultiplicationGroup( L, M ) ) = Size( M ) then return false; fi; od; return true; end ); # implies InstallTrueMethod( IsRightAlternative, IsRightPowerAlternative ); InstallTrueMethod( HasRightInverseProperty, IsRightPowerAlternative ); InstallTrueMethod( IsPowerAssociative, IsRightPowerAlternative ); ############################################################################# ## #P IsPowerAlternative( L ) ## ## Returns true if is a power alternative loop. InstallMethod( IsPowerAlternative, "for loop", [ IsLoop ], function( L ) return ( IsLeftPowerAlternative( L ) and IsRightPowerAlternative( L ) ); end ); # implies InstallTrueMethod( IsLeftPowerAlternative, IsPowerAlternative ); InstallTrueMethod( IsRightPowerAlternative, IsPowerAlternative ); ############################################################################# ## CC-LOOPS AND RELATED PROPERTIES ## ------------------------------------------------------------------------- ############################################################################# ## #P IsLCCLoop( L ) ## ## Returns true if is a left conjugacy closed loop. InstallMethod( IsLCCLoop, "for loop", [ IsLoop ], function( L ) return ForAll( LeftSection( L ), a -> ForAll( LeftSection( L ), b -> b*a*b^(-1) in LeftSection( L ) ) ); end ); # implies InstallTrueMethod( IsAssociative, IsLCCLoop and IsCommutative ); InstallTrueMethod( IsExtraLoop, IsLCCLoop and IsMoufangLoop ); ############################################################################# ## #P IsRCCLoop( L ) ## ## Returns true if is a right conjugacy closed loop. InstallMethod( IsRCCLoop, "for loop", [ IsLoop ], function( L ) return ForAll( RightSection( L ), a -> ForAll( RightSection( L ), b -> b*a*b^(-1) in RightSection( L ) ) ); end ); # implies InstallTrueMethod( IsAssociative, IsRCCLoop and IsCommutative ); InstallTrueMethod( IsExtraLoop, IsRCCLoop and IsMoufangLoop ); ############################################################################# ## #P IsCCLoop( L ) ## ## Returns true if is a conjugacy closed loop. InstallMethod( IsCCLoop, "for loop", [ IsLoop ], function( L ) return IsLCCLoop( L ) and IsRCCLoop( L ); end ); # implies InstallTrueMethod( IsLCCLoop, IsCCLoop ); InstallTrueMethod( IsRCCLoop, IsCCLoop ); # is implied by InstallTrueMethod( IsCCLoop, IsLCCLoop and IsRCCLoop ); ############################################################################# ## #P IsOsbornLoop( L ) ## ## Returns true if is an Osborn loop. InstallMethod( IsOsbornLoop, "for loop", [ IsLoop ], function( L ) # MIGHT REDO LATER return ForAll(L, x-> ForAll(L, y-> ForAll(L, z-> x*((y*z)*x) = LeftDivision(LeftInverse(x),y)*(z*x)) )); end ); # is implied by InstallTrueMethod( IsOsbornLoop, IsMoufangLoop ); InstallTrueMethod( IsOsbornLoop, IsCCLoop ); ############################################################################# ## ADDITIONAL VARIETIES OF LOOPS ## ------------------------------------------------------------------------- ############################################################################# ## #P IsCodeLoop( L ) ## ## Returns true if is an even code loop. InstallMethod( IsCodeLoop, "for loop", [ IsLoop ], function( L ) # even code loops are precisely Moufang 2-loops with Frattini subloop of order 1, 2 return Set( Factors( Size( L ) ) ) = [ 2 ] and IsMoufangLoop( L ) and Size( FrattiniSubloop( L ) ) in [1, 2]; end ); # implies InstallTrueMethod( IsExtraLoop, IsCodeLoop ); InstallTrueMethod( IsCCLoop, IsCodeLoop ); ############################################################################# ## #P IsSteinerLoop( L ) ## ## Returns true if is a Steiner loop. InstallMethod( IsSteinerLoop, "for loop", [ IsLoop ], function( L ) # Steiner loops are inverse property loops of exponent at most 2. return HasInverseProperty( L ) and Exponent( L )<=2; end ); # implies InstallTrueMethod( IsCommutative, IsSteinerLoop ); InstallTrueMethod( IsCLoop, IsSteinerLoop ); ############################################################################# ## #P IsLeftBruckLoop( L ) ## ## Returns true if is a left Bruck loop. InstallMethod( IsLeftBruckLoop, "for loop", [ IsLoop ], function( L ) return IsLeftBolLoop( L ) and HasAutomorphicInverseProperty( L ); end ); # implies InstallTrueMethod( HasAutomorphicInverseProperty, IsLeftBruckLoop ); InstallTrueMethod( IsLeftBolLoop, IsLeftBruckLoop ); InstallTrueMethod( IsRightBruckLoop, IsLeftBruckLoop and IsCommutative ); # is implied by InstallTrueMethod( IsLeftBruckLoop, IsLeftBolLoop and HasAutomorphicInverseProperty ); ############################################################################# ## #P IsRightBruckLoop( L ) ## ## Returns true if is a right Bruck loop. InstallMethod( IsRightBruckLoop, "for loop", [ IsLoop ], function( L ) return IsRightBolLoop( L ) and HasAutomorphicInverseProperty( L ); end ); # implies InstallTrueMethod( HasAutomorphicInverseProperty, IsRightBruckLoop ); InstallTrueMethod( IsRightBolLoop, IsRightBruckLoop ); InstallTrueMethod( IsLeftBruckLoop, IsRightBruckLoop and IsCommutative ); # is implied by InstallTrueMethod( IsRightBruckLoop, IsRightBolLoop and HasAutomorphicInverseProperty ); ############################################################################# ## #P IsLeftALoop( L ) ## ## Returns true if is a left A-loop, that is if ## all left inner mappings are automorphisms of . InstallMethod( IsLeftALoop, "for loop", [ IsLoop ], function( L ) local gens; gens := GeneratorsOfGroup( LeftInnerMappingGroup( L ) ); return ForAll(gens, f -> ForAll(L, x -> ForAll(L, y -> (x * y)^f = x^f * y^f ))); end); ############################################################################# ## #P IsRightALoop( L ) ## ## Returns true if is a right A-loop, that is if ## all right inner mappings are automorphisms of . InstallMethod( IsRightALoop, "for loop", [ IsLoop ], function( L ) local gens; gens := GeneratorsOfGroup( RightInnerMappingGroup( L ) ); return ForAll(gens, f -> ForAll(L, x -> ForAll(L, y -> (x * y)^f = x^f * y^f ))); end); ############################################################################# ## #P IsMiddleALoop( L ) ## ## Returns true if is a middle A-loop, that is if ## all middle inner mappings (conjugations) are automorphisms of . InstallMethod( IsMiddleALoop, "for loop", [ IsLoop ], function( L ) local gens; gens := GeneratorsOfGroup( MiddleInnerMappingGroup( L ) ); return ForAll(gens, f -> ForAll(L, x -> ForAll(L, y -> (x * y)^f = x^f * y^f ))); end); ############################################################################# ## #P IsALoop( L ) ## ## Returns true if is an A-loop, that is if ## all inner mappings are automorphisms of . InstallMethod( IsALoop, "for loop", [ IsLoop ], function( Q ) return IsRightALoop(Q) and IsMiddleALoop(Q); # Theorem: rigth A-loop + middle A-loop implies left A-loop end); # implies InstallTrueMethod( IsLeftALoop, IsALoop ); InstallTrueMethod( IsRightALoop, IsALoop ); InstallTrueMethod( IsMiddleALoop, IsALoop ); InstallTrueMethod( IsLeftALoop, IsRightALoop and HasAntiautomorphicInverseProperty ); InstallTrueMethod( IsRightALoop, IsLeftALoop and HasAntiautomorphicInverseProperty ); InstallTrueMethod( IsFlexible, IsMiddleALoop ); InstallTrueMethod( HasAntiautomorphicInverseProperty, IsFlexible and IsLeftALoop ); InstallTrueMethod( HasAntiautomorphicInverseProperty, IsFlexible and IsRightALoop ); InstallTrueMethod( IsMoufangLoop, IsALoop and IsLeftAlternative ); InstallTrueMethod( IsMoufangLoop, IsALoop and IsRightAlternative ); InstallTrueMethod( IsMoufangLoop, IsALoop and HasLeftInverseProperty ); InstallTrueMethod( IsMoufangLoop, IsALoop and HasRightInverseProperty ); InstallTrueMethod( IsMoufangLoop, IsALoop and HasWeakInverseProperty ); # is implied by InstallTrueMethod( IsMiddleALoop, IsCommutative ); InstallTrueMethod( IsLeftALoop, IsLeftBruckLoop ); InstallTrueMethod( IsLeftALoop, IsLCCLoop ); InstallTrueMethod( IsRightALoop, IsRightBruckLoop ); InstallTrueMethod( IsRightALoop, IsRCCLoop ); InstallTrueMethod( IsALoop, IsCommutative and IsMoufangLoop ); InstallTrueMethod( IsALoop, IsLeftALoop and IsMiddleALoop ); InstallTrueMethod( IsALoop, IsRightALoop and IsMiddleALoop ); InstallTrueMethod( IsALoop, IsAssociative );