############################################################################# ## #W quasigroups.gd Representing, creating and displaying quasigroups [loops] ## #H @(#)$Id: quasigroups.gd, v 3.4.0 2017/10/17 gap Exp $ ## #Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary), #Y P. Vojtechovsky (University of Denver, USA) ## ############################################################################# ## GAP CATEGORIES AND REPRESENTATIONS ## ------------------------------------------------------------------------- ## Categories convenient for defining quasigroups ## element which is an admissible argument for the right argument of / DeclareCategory( "IsRightQuotientElement", IsExtLElement); DeclareCategoryCollections("IsRightQuotientElement"); DeclareCategoryCollections("IsRightQuotientElementCollection"); ## Every element with an inverse can form right quotients ## (in fact, in some sense it might be enough to have just a left inverse, ## but there doesn't seem to be any benefit to delving to that level of ## detail at this point.) InstallTrueMethod(IsRightQuotientElement, IsMultiplicativeElementWithInverse); ## Now what we would like to do is re-declare ## DeclareOperation( "/", [IsExtRElement, IsRightQuotientElement] ); ## but we can't since "/" is in the kernel, so we will have to content ## ourselves with InstallOtherMethod() calls on /. (I am not actually sure what ## the practical upshot of that is, i.e. if it has any shortcomings as compared ## to if we could declare "/" more generally.) ## Element which is admissible for the left argument of LeftQuotient() DeclareCategory( "IsLeftQuotientElement", IsExtRElement); DeclareCategoryCollections("IsLeftQuotientElement"); DeclareCategoryCollections("IsLeftQuotientElementCollection"); ## Every element with an inverse can form left quotients InstallTrueMethod(IsLeftQuotientElement, IsMultiplicativeElementWithInverse); ## Again, ideally (in some sense) we'd like to redeclare ## DeclareOperation("LeftQuotient", [IsLeftQuotientElement,IsExtLElement]); ## element of a quasigroup DeclareSynonym( "IsQuasigroupElement", IsMultiplicativeElement and IsLeftQuotientElement and IsRightQuotientElement ); DeclareRepresentation( "IsQuasigroupElmRep", IsPositionalObjectRep and IsQuasigroupElement, [1] ); ## element of a loop DeclareSynonym( "IsLoopElement", IsQuasigroupElement and IsMultiplicativeElementWithInverse ); DeclareRepresentation( "IsLoopElmRep", IsQuasigroupElmRRep and IsMultiplicativeElementWithInverse, [1] ); ## Right quasigroup DeclareCategory("IsRightQuasigroup", IsMagma and IsRightQuotientElementCollection); ## Left quasigroup DeclareCategory("IsLeftQuasigroup", IsMagma and IsLeftQuotientElementCollection); ## quasigroup DeclareSynonym( "IsQuasigroup", IsRightQuasigroup and IsLeftQuasigroup ); ## loop DeclareSynonym( "IsLoop", IsQuasigroup and IsMagmaWithOne and IsMultiplicativeElementWithInverseCollection); ############################################################################# ## TESTING MULTIPLICATION TABLES ## ------------------------------------------------------------------------- DeclareProperty( "IsLeftQuasigroupTable", IsMatrix ); DeclareProperty( "IsRightQuasigroupTable", IsMatrix ); DeclareSynonym( "IsQuasigroupTable", IsLeftQuasigroupTable and IsRightQuasigroupTable ); DeclareSynonym( "IsQuasigroupCayleyTable", IsQuasigroupTable ); DeclareProperty( "IsLoopTable", IsMatrix ); DeclareSynonym( "IsLoopCayleyTable", IsLoopTable ); DeclareGlobalFunction("CanonicalCayleyTableOfLeftQuasigroupTable"); DeclareOperation( "CanonicalCayleyTable", [ IsMatrix ] ); DeclareOperation( "NormalizedQuasigroupTable", [ IsMatrix ] ); ############################################################################# ## CREATING QUASIGROUPS AND LOOPS MANUALLY ## ------------------------------------------------------------------------- DeclareAttribute( "CayleyTable", IsMagma ); DeclareOperation( "QuasigroupByCayleyTable", [ IsMatrix ] ); DeclareOperation( "LoopByCayleyTable", [ IsMatrix ] ); DeclareOperation( "SpecifyElmNamePrefix", [ IsCollection, IsString ] ); DeclareSynonym( "SetQuasigroupElmName", SpecifyElmNamePrefix ); DeclareSynonym( "SetLoopElmName", SpecifyElmNamePrefix ); DeclareOperation( "BindElmNames", [ IsMagma ] ); DeclareAttribute( "ConstructorFromTable", IsMagma ); DeclareOperation( "CanonicalCopy", [ IsMagma ] ); ############################################################################# ## CREATING QUASIGROUPS AND LOOPS FROM A FILE ## ------------------------------------------------------------------------- DeclareOperation( "QuasigroupFromFile", [ IsString, IsString ] ); DeclareOperation( "LoopFromFile", [ IsString, IsString ] ); ############################################################################# ## CREATING QUASIGROUPS AND LOOPS BY SECTIONS ## ------------------------------------------------------------------------- DeclareGlobalFunction("CayleyTableByPerms"); DeclareOperation( "QuasigroupByLeftSection", [ IsPermCollection ] ); DeclareOperation( "LoopByLeftSection", [ IsPermCollection ] ); DeclareOperation( "QuasigroupByRightSection", [ IsPermCollection ] ); DeclareOperation( "LoopByRightSection", [ IsPermCollection ] ); DeclareOperation( "QuasigroupByRightFolder", [ IsGroup, IsGroup, IsMultiplicativeElementCollection ] ); DeclareOperation( "LoopByRightFolder", [ IsGroup, IsGroup, IsMultiplicativeElementCollection ] ); ############################################################################# ## CONVERSIONS ## ------------------------------------------------------------------------- DeclareOperation( "IntoQuasigroup", [ IsMagma ] ); DeclareOperation( "PrincipalLoopIsotope", [ IsQuasigroup, IsQuasigroupElement, IsQuasigroupElement ] ); DeclareOperation( "IntoLoop", [ IsMagma ] ); DeclareOperation( "IntoGroup", [ IsMagma ] ); ############################################################################# ## PRODUCTS OF QUASIGROUPS AND LOOPS ## -------------------------------------------------------------------------- DeclareGlobalFunction("ProductTableOfCanonicalCayleyTables"); #DirectProduct already declared for groups. ############################################################################# ## OPPOSITE QUASIGROUPS AND LOOPS ## -------------------------------------------------------------------------- DeclareGlobalFunction( "OppositeQuasigroup"); DeclareGlobalFunction( "OppositeLoop"); DeclareAttribute( "Opposite", IsMagma ); ############################################################################# ## AUXILIARY ## -------------------------------------------------------------------------- DeclareGlobalFunction( "LOOPS_ReadCayleyTableFromFile" ); DeclareGlobalFunction( "LOOPS_CayleyTableByRightFolder" );