include("Engine.jl") using SparseArrays # initialize the partial gram matrix for a sphere inscribed in a regular # tetrahedron J = Int64[] K = Int64[] values = BigFloat[] for j in 1:9 for k in 1:9 filled = false if j == 9 if (k <= 5 && k != 2) push!(values, 0) filled = true end elseif k == 9 if (j <= 5 && j != 2) push!(values, 0) filled = true end elseif j == k push!(values, 1) filled = true elseif (j == 1 || k == 1) push!(values, 0) filled = true elseif (j == 2 || k == 2) push!(values, -1) filled = true end if filled push!(J, j) push!(K, k) end end end append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4]) append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8]) append!(values, fill(-1, 12)) #= make construction rigid append!(J, [3, 4, 4, 5]) append!(K, [4, 3, 5, 4]) append!(values, fill(-0.5, 4)) =# gram = sparse(J, K, values) # set initial guess (random) ## Random.seed!(58271) # stuck; step size collapses on step 48 ## Random.seed!(58272) # good convergence ## Random.seed!(58273) # stuck; step size collapses on step 18 ## Random.seed!(58274) # stuck ## Random.seed!(58275) # ## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8)) # set initial guess guess = hcat( Engine.plane(BigFloat[0, 0, 1], BigFloat(0)), Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)), Engine.plane(BigFloat[1, 0, 0], BigFloat(1)), Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)), Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)), Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)), Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)), Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)), BigFloat[0, 0, 0, 1, 1] ) frozen = [CartesianIndex(j, 9) for j in 4:5] #= guess = hcat( Engine.plane(BigFloat[0, 0, 1], BigFloat(0)), Engine.sphere(BigFloat[0, 0, 0], BigFloat(0.9)), Engine.plane(BigFloat[1, 0, 0], BigFloat(1)), Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)), Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)), Engine.sphere(4//3*BigFloat[-1, 0, 0], BigFloat(1//3)), Engine.sphere(4//3*BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//3)), Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3)), BigFloat[0, 0, 0, 1, 1] ) =# # complete the gram matrix using gradient descent followed by Newton's method #= L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01) L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9) L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol) =# L, success, history = Engine.realize_gram(gram, guess, frozen) completed_gram = L'*Engine.Q*L println("Completed Gram matrix:\n") display(completed_gram) #= println( "\nSteps: ", size(history.scaled_loss, 1), " + ", size(history_pol.scaled_loss, 1), " + ", size(history_pol2.scaled_loss, 1) ) println("Loss: ", history_pol2.scaled_loss[end], "\n") =# if success println("\nTarget accuracy achieved!") else println("\nFailed to reach target accuracy") end println("Steps: ", size(history.scaled_loss, 1)) println("Loss: ", history.scaled_loss[end], "\n")