module Algebraic export codimension, dimension, Construction, realize, Element, Point, Sphere, Relation, LiesOn, AlignsWithBy, mprod import Subscripts using LinearAlgebra using AbstractAlgebra using Groebner using ...HittingSet # --- commutative algebra --- # as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate # polynomial rings when the coefficients are integers. we use Groebner to extend # support to rationals and to finite fields of prime order Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} = Generic.Ideal{U}(base_ring(I), groebner(gens(I))) function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} leading = [exponent_vector(f, 1) for f in gens(I)] targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading] length(HittingSet.solve(HittingSetProblem(targets), maxdepth)) end dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} = length(gens(base_ring(I))) - codimension(I, maxdepth) # --- primitve elements --- abstract type Element{T} end mutable struct Point{T} <: Element{T} coords::Vector{MPolyRingElem{T}} vec::Union{Vector{MPolyRingElem{T}}, Nothing} rel::Nothing ## [to do] constructor argument never needed? Point{T}( coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[], vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing ) where T = new(coords, vec, nothing) end function buildvec!(pt::Point) coordring = parent(pt.coords[1]) pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...] end mutable struct Sphere{T} <: Element{T} coords::Vector{MPolyRingElem{T}} vec::Union{Vector{MPolyRingElem{T}}, Nothing} rel::Union{MPolyRingElem{T}, Nothing} ## [to do] constructor argument never needed? Sphere{T}( coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[], vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing, rel::Union{MPolyRingElem{T}, Nothing} = nothing ) where T = new(coords, vec, rel) end function buildvec!(sph::Sphere) coordring = parent(sph.coords[1]) sph.vec = sph.coords sph.rel = mprod(sph.coords, sph.coords) + one(coordring) end const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}( nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ], nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ] ) coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index] function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex) eltindex, elt = indexed_elt name = coordname(elt, coordindex) if !isnothing(name) subscript = Subscripts.sub(string(eltindex)) push!(coordnamelist, Symbol(name, subscript)) end end function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex) elt = indexed_elt[2] if !isnothing(coordname(elt, coordindex)) push!(elt.coords, popfirst!(coordlist)) end end # --- primitive relations --- abstract type Relation{T} end mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end]) # elements: point, sphere struct LiesOn{T} <: Relation{T} elements::Vector{Element{T}} LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph]) end equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec) # elements: sphere, sphere struct AlignsWithBy{T} <: Relation{T} elements::Vector{Element{T}} cos_angle::T AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle) end equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle # --- constructions --- mutable struct Construction{T} points::Set{Point{T}} spheres::Set{Sphere{T}} relations::Set{Relation{T}} function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T allelements = union(elements, (rel.elements for rel in relations)...) new{T}( filter(elt -> isa(elt, Point), allelements), filter(elt -> isa(elt, Sphere), allelements), relations ) end end function Base.push!(ctx::Construction{T}, elt::Point{T}) where T push!(ctx.points, elt) end function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T push!(ctx.spheres, elt) end function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T push!(ctx.relations, rel) for elt in rel.elements push!(ctx, elt) end end function realize(ctx::Construction{T}) where T # collect coordinate names coordnamelist = Symbol[] eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points))) for coordindex in 1:5 for indexed_elt in eltenum pushcoordname!(coordnamelist, indexed_elt, coordindex) end end # construct coordinate ring coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex) # retrieve coordinates for (_, elt) in eltenum empty!(elt.coords) end for coordindex in 1:5 for indexed_elt in eltenum takecoord!(coordqueue, indexed_elt, coordindex) end end # construct coordinate vectors for (_, elt) in eltenum buildvec!(elt) end # turn relations into equations eqns = vcat( equation.(ctx.relations), [elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)] ) # add relations to center, orient, and scale the construction # [to do] the scaling constraint, as written, can be impossible to satisfy # when all of the spheres have to go through the origin if !isempty(ctx.points) append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3]) end if !isempty(ctx.spheres) append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4]) end n_elts = length(ctx.points) + length(ctx.spheres) if n_elts > 0 push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts) end ## [test] (Generic.Ideal(coordring, eqns), eqns) (nothing, eqns) end end