include("HittingSet.jl") module Engine include("Engine.Algebraic.jl") include("Engine.Numerical.jl") using .Algebraic using .Numerical export Construction, mprod, codimension, dimension end # ~~~ sandbox setup ~~~ using Random using Distributions using LinearAlgebra using AbstractAlgebra using HomotopyContinuation using GLMakie CoeffType = Rational{Int64} ##a = Engine.Point{CoeffType}() ##s = Engine.Sphere{CoeffType}() ##a_on_s = Engine.LiesOn{CoeffType}(a, s) ##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ##ideal_a_s = Engine.realize(ctx) ##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom") ##b = Engine.Point{CoeffType}() ##b_on_s = Engine.LiesOn{CoeffType}(b, s) ##Engine.push!(ctx, b) ##Engine.push!(ctx, s) ##Engine.push!(ctx, b_on_s) ##ideal_ab_s, eqns_ab_s = Engine.realize(ctx) ##freedom = Engine.dimension(ideal_ab_s) ##println("Two points on a sphere: $freedom degrees of freedom") spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] ##tangencies = [ ## Engine.AlignsWithBy{CoeffType}( ## spheres[n], ## spheres[mod1(n+1, length(spheres))], ## CoeffType(-1//1) ## ) ## for n in 1:3 ##] tangencies = [ Engine.AlignsWithBy{CoeffType}(spheres[1], spheres[2], CoeffType(-1)), Engine.AlignsWithBy{CoeffType}(spheres[2], spheres[3], CoeffType(-1//2)) ] ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph) freedom = Engine.dimension(ideal_tan_sph) ##println("Three mutually tangent spheres: $freedom degrees of freedom") println("Chain of three spheres: $freedom degrees of freedom") # --- test rational cut --- coordring = base_ring(ideal_tan_sph) vbls = Variable.(symbols(coordring)) # test a random witness set system = CompiledSystem(System(eqns_tan_sph, variables = vbls)) norm2 = vec -> real(dot(conj.(vec), vec)) Random.seed!(6071) n_planes = 16 samples = [] for _ in 1:n_planes real_solns = solution.(Engine.Numerical.real_samples(system, freedom)) for soln in real_solns if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) push!(samples, soln) end end end println("$(length(samples)) sample solutions:") for soln in samples ## display([vbls round.(soln, digits = 6)]) ## [verbose] k_sq = abs2(soln[1]) if abs2(soln[end-2]) > 1e-12 if k_sq < 1e-12 println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))") else sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))") end else sum_sq = sum(soln[[4, 7, 10]] .^ 2) println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") end end # show a sample solution function show_solution(ctx, vals) # evaluate elements real_vals = real.(vals) disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points] disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres] # create scene scene = Scene() cam3d!(scene) scatter!(scene, disp_points, color = :green) for sph in disp_spheres mesh!(scene, sph, color = :gray) end scene end