include("Engine.jl") using SparseArrays using AbstractAlgebra using PolynomialRoots # initialize the partial gram matrix for a sphere inscribed in a regular # tetrahedron J = Int64[] K = Int64[] values = BigFloat[] for j in 1:8 for k in 1:8 filled = false if j == k push!(values, 1) filled = true elseif (j == 1 || k == 1) push!(values, 0) filled = true elseif (j == 2 || k == 2) push!(values, -1) filled = true end if filled push!(J, j) push!(K, k) end end end append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4]) append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8]) append!(values, fill(-1, 12)) gram = sparse(J, K, values) # set initial guess (random) ## Random.seed!(58271) # stuck; step size collapses on step 48 ## Random.seed!(58272) # good convergence ## Random.seed!(58273) # stuck; step size collapses on step 18 ## Random.seed!(58274) # stuck ## Random.seed!(58275) # ## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8)) # set initial guess guess = hcat( Engine.plane(BigFloat[0, 0, 1], BigFloat(0)), Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)), Engine.plane(BigFloat[1, 0, 0], BigFloat(1)), Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)), Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)), Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)), Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)), Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)) ) # complete the gram matrix using gradient descent L, history = Engine.realize_gram(gram, guess, max_descent_steps = 200) completed_gram = L'*Engine.Q*L println("Completed Gram matrix:\n") display(completed_gram) println("\nSteps: ", size(history.stepsize, 1)) println("Loss: ", history.scaled_loss[end], "\n")