include("HittingSet.jl") module Engine include("Engine.Algebraic.jl") include("Engine.Numerical.jl") using .Algebraic using .Numerical export Construction, mprod, codimension, dimension end # ~~~ sandbox setup ~~~ using Random using Distributions using LinearAlgebra using AbstractAlgebra using HomotopyContinuation using GLMakie CoeffType = Rational{Int64} a = Engine.Point{CoeffType}() s = Engine.Sphere{CoeffType}() a_on_s = Engine.LiesOn{CoeffType}(a, s) ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ##ideal_a_s = Engine.realize(ctx) ##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom") b = Engine.Point{CoeffType}() b_on_s = Engine.LiesOn{CoeffType}(b, s) Engine.push!(ctx, b) Engine.push!(ctx, s) Engine.push!(ctx, b_on_s) ideal_ab_s, eqns_ab_s = Engine.realize(ctx) freedom = Engine.dimension(ideal_ab_s) println("Two points on a sphere: ", freedom, " degrees of freedom") ##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] ##tangencies = [ ## Engine.AlignsWithBy{CoeffType}( ## spheres[n], ## spheres[mod1(n+1, length(spheres))], ## CoeffType(-1//1) ## ) ## for n in 1:3 ##] ##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ##ideal_tan_sph = Engine.realize(ctx_tan_sph) ##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom") # --- test rational cut --- coordring = base_ring(ideal_ab_s) vbls = Variable.(symbols(coordring)) # test a random witness set system = CompiledSystem(System(eqns_ab_s, variables = vbls)) sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring)) println("sphere z variables: ", vbls[sph_z_ind]) ## [old] trivial_soln = fill(0, length(gens(coordring))) ## [old] trivial_soln[sph_z_ind] .= 1 ## [old] println("trivial solutions: $trivial_soln") norm2 = vec -> real(dot(conj.(vec), vec)) ## [old] is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring)) Random.seed!(6071) n_planes = 3 samples = [] for _ in 1:n_planes real_solns = solution.(Engine.Numerical.real_samples(system, freedom)) ## [old] nontrivial_solns = filter(is_nontrivial, real_solns) ## [old] println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found") for soln in real_solns if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) push!(samples, soln) end end end println("$(length(samples)) sample solutions:") for soln in samples ## display([vbls round.(soln, digits = 6)]) ## [verbose] k_sq = abs2(soln[1]) if abs2(soln[end-2]) > 1e-12 if k_sq < 1e-12 println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))") else sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))") end else sum_sq = sum(soln[[4, 7, 10]] .^ 2) println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") end end # show a sample solution function show_solution(vals) # evaluate elements real_vals = real.(vals) disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points] disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres] # create scene scene = Scene() cam3d!(scene) scatter!(scene, disp_points, color = :green) for sph in disp_spheres mesh!(scene, sph, color = :gray) end scene end