include("Engine.jl") using SparseArrays using AbstractAlgebra using PolynomialRoots using Random # initialize the partial gram matrix for an arrangement of seven spheres in # which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are # also mutually tangent J = Int64[] K = Int64[] values = BigFloat[] for j in 1:7 for k in 1:7 if (j <= 5 && k <= 5) || (j >= 3 && k >= 3) push!(J, j) push!(K, k) push!(values, j == k ? 1 : -1) end end end gram = sparse(J, K, values) # set the independent variable # # using gram[6, 2] or gram[7, 1] as the independent variable seems to stall # convergence, even if its value comes from a known solution, like # # gram[6, 2] = 0.9936131705272925 # indep_val = -9//5 gram[6, 1] = BigFloat(indep_val) gram[1, 6] = gram[6, 1] # in this initial guess, the mutual tangency condition is satisfied for spheres # 1 through 5 Random.seed!(50793) guess = let a = sqrt(BigFloat(3)/2) hcat( sqrt(1/BigFloat(2)) * BigFloat[ 1 1 -1 -1 0 1 -1 1 -1 0 1 -1 -1 1 0 0.5 0.5 0.5 0.5 1+a 0.5 0.5 0.5 0.5 1-a ] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5)), Engine.rand_on_shell(fill(BigFloat(-1), 2)) ) end # complete the gram matrix using Newton's method with backtracking L, success, history = Engine.realize_gram(gram, guess) completed_gram = L'*Engine.Q*L println("Completed Gram matrix:\n") display(completed_gram) if success println("\nTarget accuracy achieved!") else println("\nFailed to reach target accuracy") end println("Steps: ", size(history.scaled_loss, 1)) println("Loss: ", history.scaled_loss[end], "\n") # === algebraic check === #= R, gens = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"]) x = gens[1] t = gens[2:4] S, u = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), "u") M = matrix_space(R, 7, 7) gram_symb = M(R[ 1 -1 -1 -1 -1 t[1] t[2]; -1 1 -1 -1 -1 x t[3] -1 -1 1 -1 -1 -1 -1; -1 -1 -1 1 -1 -1 -1; -1 -1 -1 -1 1 -1 -1; t[1] x -1 -1 -1 1 -1; t[2] t[3] -1 -1 -1 -1 1 ]) rank_constraints = det.([ gram_symb[1:6, 1:6], gram_symb[2:7, 2:7], gram_symb[[1, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 7]] ]) # solve for x and t x_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[1], [2], [indep_val])) t₂_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[3], [2], [indep_val])) x_vals = PolynomialRoots.roots(x_constraint.coeffs) t₂_vals = PolynomialRoots.roots(t₂_constraint.coeffs) =#