module Engine using LinearAlgebra using GenericLinearAlgebra using SparseArrays using Random using Optim export rand_on_shell, Q, DescentHistory, realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram_alt_proj, realize_gram # === guessing === sconh(t, u) = 0.5*(exp(t) + u*exp(-t)) function rand_on_sphere(rng::AbstractRNG, ::Type{T}, n) where T out = randn(rng, T, n) tries_left = 2 while dot(out, out) < 1e-6 && tries_left > 0 out = randn(rng, T, n) tries_left -= 1 end normalize(out) end ##[TO DO] write a test to confirm that the outputs are on the correct shells function rand_on_shell(rng::AbstractRNG, shell::T) where T <: Number space_part = rand_on_sphere(rng, T, 4) rapidity = randn(rng, T) sig = sign(shell) nullmix * [sconh(rapidity, sig)*space_part; sconh(rapidity, -sig)] end rand_on_shell(rng::AbstractRNG, shells::Array{T}) where T <: Number = hcat([rand_on_shell(rng, sh) for sh in shells]...) rand_on_shell(shells::Array{<:Number}) = rand_on_shell(Random.default_rng(), shells) # === elements === point(pos) = [pos; 0.5; 0.5 * dot(pos, pos)] plane(normal, offset) = [-normal; 0; -offset] function sphere(center, radius) dist_sq = dot(center, center) [ center / radius; 0.5 / radius; 0.5 * (dist_sq / radius - radius) ] end # === Gram matrix realization === # basis changes nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]//2] unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]] # the Lorentz form Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]] # project a matrix onto the subspace of matrices whose entries vanish away from # the given indices function proj_to_entries(mat, indices) result = zeros(size(mat)) for (j, k) in indices result[j, k] = mat[j, k] end result end # the difference between the matrices `target` and `attempt`, projected onto the # subspace of matrices whose entries vanish at each empty index of `target` function proj_diff(target::SparseMatrixCSC{T, <:Any}, attempt::Matrix{T}) where T J, K, values = findnz(target) result = zeros(size(target)) for (j, k, val) in zip(J, K, values) result[j, k] = val - attempt[j, k] end result end # a type for keeping track of gradient descent history struct DescentHistory{T} scaled_loss::Array{T} neg_grad::Array{Matrix{T}} base_step::Array{Matrix{T}} hess::Array{Hermitian{T, Matrix{T}}} slope::Array{T} stepsize::Array{T} positive::Array{Bool} backoff_steps::Array{Int64} last_line_L::Array{Matrix{T}} last_line_loss::Array{T} function DescentHistory{T}( scaled_loss = Array{T}(undef, 0), neg_grad = Array{Matrix{T}}(undef, 0), hess = Array{Hermitian{T, Matrix{T}}}(undef, 0), base_step = Array{Matrix{T}}(undef, 0), slope = Array{T}(undef, 0), stepsize = Array{T}(undef, 0), positive = Bool[], backoff_steps = Int64[], last_line_L = Array{Matrix{T}}(undef, 0), last_line_loss = Array{T}(undef, 0) ) where T new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, positive, backoff_steps, last_line_L, last_line_loss) end end # seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every # explicit entry of `gram`. use gradient descent starting from `guess` function realize_gram_gradient( gram::SparseMatrixCSC{T, <:Any}, guess::Matrix{T}; scaled_tol = 1e-30, min_efficiency = 0.5, init_stepsize = 1.0, backoff = 0.9, max_descent_steps = 600, max_backoff_steps = 110 ) where T <: Number # start history history = DescentHistory{T}() # scale tolerance scale_adjustment = sqrt(T(nnz(gram))) tol = scale_adjustment * scaled_tol # initialize variables stepsize = init_stepsize L = copy(guess) # do gradient descent Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) for _ in 1:max_descent_steps # stop if the loss is tolerably low if loss < tol break end # find the negative gradient of the loss function neg_grad = 4*Q*L*Δ_proj slope = norm(neg_grad) dir = neg_grad / slope # store current position, loss, and slope L_last = L loss_last = loss push!(history.scaled_loss, loss / scale_adjustment) push!(history.neg_grad, neg_grad) push!(history.slope, slope) # find a good step size using backtracking line search push!(history.stepsize, 0) push!(history.backoff_steps, max_backoff_steps) empty!(history.last_line_L) empty!(history.last_line_loss) for backoff_steps in 0:max_backoff_steps history.stepsize[end] = stepsize L = L_last + stepsize * dir Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) improvement = loss_last - loss push!(history.last_line_L, L) push!(history.last_line_loss, loss / scale_adjustment) if improvement >= min_efficiency * stepsize * slope history.backoff_steps[end] = backoff_steps break end stepsize *= backoff end # [DEBUG] if we've hit a wall, quit if history.backoff_steps[end] == max_backoff_steps break end end # return the factorization and its history push!(history.scaled_loss, loss / scale_adjustment) L, history end function basis_matrix(::Type{T}, j, k, dims) where T result = zeros(T, dims) result[j, k] = one(T) result end # seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every # explicit entry of `gram`. use Newton's method starting from `guess` function realize_gram_newton( gram::SparseMatrixCSC{T, <:Any}, guess::Matrix{T}; scaled_tol = 1e-30, rate = 1, max_steps = 100 ) where T <: Number # start history history = DescentHistory{T}() # find the dimension of the search space dims = size(guess) element_dim, construction_dim = dims total_dim = element_dim * construction_dim # list the constrained entries of the gram matrix J, K, _ = findnz(gram) constrained = zip(J, K) # scale the tolerance scale_adjustment = sqrt(T(length(constrained))) tol = scale_adjustment * scaled_tol # use Newton's method L = copy(guess) for step in 0:max_steps # evaluate the loss function Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) # store the current loss push!(history.scaled_loss, loss / scale_adjustment) # stop if the loss is tolerably low if loss < tol || step > max_steps break end # find the negative gradient of the loss function neg_grad = 4*Q*L*Δ_proj # find the negative Hessian of the loss function hess = Matrix{T}(undef, total_dim, total_dim) indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim] for (j, k) in indices basis_mat = basis_matrix(T, j, k, dims) neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained) deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim) end hess = Hermitian(hess) push!(history.hess, hess) # compute the Newton step step = hess \ reshape(neg_grad, total_dim) L += rate * reshape(step, dims) end # return the factorization and its history L, history end LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) = eigen!(Hermitian(A)) function convertnz(type, mat) J, K, values = findnz(mat) sparse(J, K, type.(values)) end function realize_gram_optim( gram::SparseMatrixCSC{T, <:Any}, guess::Matrix{T} ) where T <: Number # find the dimension of the search space dims = size(guess) element_dim, construction_dim = dims total_dim = element_dim * construction_dim # list the constrained entries of the gram matrix J, K, _ = findnz(gram) constrained = zip(J, K) # scale the loss function scale_adjustment = length(constrained) function loss(L_vec) L = reshape(L_vec, dims) Δ_proj = proj_diff(gram, L'*Q*L) dot(Δ_proj, Δ_proj) / scale_adjustment end function loss_grad!(storage, L_vec) L = reshape(L_vec, dims) Δ_proj = proj_diff(gram, L'*Q*L) storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment end function loss_hess!(storage, L_vec) L = reshape(L_vec, dims) Δ_proj = proj_diff(gram, L'*Q*L) indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim] for (j, k) in indices basis_mat = basis_matrix(T, j, k, dims) neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained) deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim) end end optimize( loss, loss_grad!, loss_hess!, reshape(guess, total_dim), Newton() ) end # seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every # explicit entry of `gram`. use gradient descent starting from `guess`, with an # alternate technique for finding the projected base step from the unprojected # Hessian function realize_gram_alt_proj( gram::SparseMatrixCSC{T, <:Any}, guess::Matrix{T}, frozen = CartesianIndex[]; scaled_tol = 1e-30, min_efficiency = 0.5, init_rate = 1.0, backoff = 0.9, reg_scale = 1.1, max_descent_steps = 200, max_backoff_steps = 110 ) where T <: Number # start history history = DescentHistory{T}() # find the dimension of the search space dims = size(guess) element_dim, construction_dim = dims total_dim = element_dim * construction_dim # list the constrained entries of the gram matrix J, K, _ = findnz(gram) constrained = zip(J, K) # scale the tolerance scale_adjustment = sqrt(T(length(constrained))) tol = scale_adjustment * scaled_tol # convert the frozen indices to stacked format frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen] # initialize variables grad_rate = init_rate L = copy(guess) # use Newton's method with backtracking and gradient descent backup Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) for step in 1:max_descent_steps # stop if the loss is tolerably low if loss < tol break end # find the negative gradient of the loss function neg_grad = 4*Q*L*Δ_proj # find the negative Hessian of the loss function hess = Matrix{T}(undef, total_dim, total_dim) indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim] for (j, k) in indices basis_mat = basis_matrix(T, j, k, dims) neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained) deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim) end hess_sym = Hermitian(hess) push!(history.hess, hess_sym) # regularize the Hessian min_eigval = minimum(eigvals(hess_sym)) push!(history.positive, min_eigval > 0) if min_eigval <= 0 hess -= reg_scale * min_eigval * I end # compute the Newton step neg_grad_stacked = reshape(neg_grad, total_dim) for k in frozen_stacked neg_grad_stacked[k] = 0 hess[k, :] .= 0 hess[:, k] .= 0 hess[k, k] = 1 end base_step_stacked = Hermitian(hess) \ neg_grad_stacked base_step = reshape(base_step_stacked, dims) push!(history.base_step, base_step) # store the current position, loss, and slope L_last = L loss_last = loss push!(history.scaled_loss, loss / scale_adjustment) push!(history.neg_grad, neg_grad) push!(history.slope, norm(neg_grad)) # find a good step size using backtracking line search push!(history.stepsize, 0) push!(history.backoff_steps, max_backoff_steps) empty!(history.last_line_L) empty!(history.last_line_loss) rate = one(T) step_success = false for backoff_steps in 0:max_backoff_steps history.stepsize[end] = rate L = L_last + rate * base_step Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) improvement = loss_last - loss push!(history.last_line_L, L) push!(history.last_line_loss, loss / scale_adjustment) if improvement >= min_efficiency * rate * dot(neg_grad, base_step) history.backoff_steps[end] = backoff_steps step_success = true break end rate *= backoff end # if we've hit a wall, quit if !step_success return L_last, false, history end end # return the factorization and its history push!(history.scaled_loss, loss / scale_adjustment) L, loss < tol, history end # seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every # explicit entry of `gram`. use gradient descent starting from `guess` function realize_gram( gram::SparseMatrixCSC{T, <:Any}, guess::Matrix{T}, frozen = nothing; scaled_tol = 1e-30, min_efficiency = 0.5, init_rate = 1.0, backoff = 0.9, reg_scale = 1.1, max_descent_steps = 200, max_backoff_steps = 110 ) where T <: Number # start history history = DescentHistory{T}() # find the dimension of the search space dims = size(guess) element_dim, construction_dim = dims total_dim = element_dim * construction_dim # list the constrained entries of the gram matrix J, K, _ = findnz(gram) constrained = zip(J, K) # scale the tolerance scale_adjustment = sqrt(T(length(constrained))) tol = scale_adjustment * scaled_tol # list the un-frozen indices has_frozen = !isnothing(frozen) if has_frozen is_unfrozen = fill(true, size(guess)) is_unfrozen[frozen] .= false unfrozen = findall(is_unfrozen) unfrozen_stacked = reshape(is_unfrozen, total_dim) end # initialize variables grad_rate = init_rate L = copy(guess) # use Newton's method with backtracking and gradient descent backup Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) for step in 1:max_descent_steps # stop if the loss is tolerably low if loss < tol break end # find the negative gradient of the loss function neg_grad = 4*Q*L*Δ_proj # find the negative Hessian of the loss function hess = Matrix{T}(undef, total_dim, total_dim) indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim] for (j, k) in indices basis_mat = basis_matrix(T, j, k, dims) neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained) deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim) end hess = Hermitian(hess) push!(history.hess, hess) # regularize the Hessian min_eigval = minimum(eigvals(hess)) push!(history.positive, min_eigval > 0) if min_eigval <= 0 hess -= reg_scale * min_eigval * I end # compute the Newton step neg_grad_stacked = reshape(neg_grad, total_dim) if has_frozen hess = hess[unfrozen_stacked, unfrozen_stacked] neg_grad_compressed = neg_grad_stacked[unfrozen_stacked] else neg_grad_compressed = neg_grad_stacked end base_step_compressed = hess \ neg_grad_compressed if has_frozen base_step_stacked = zeros(total_dim) base_step_stacked[unfrozen_stacked] .= base_step_compressed else base_step_stacked = base_step_compressed end base_step = reshape(base_step_stacked, dims) push!(history.base_step, base_step) # store the current position, loss, and slope L_last = L loss_last = loss push!(history.scaled_loss, loss / scale_adjustment) push!(history.neg_grad, neg_grad) push!(history.slope, norm(neg_grad)) # find a good step size using backtracking line search push!(history.stepsize, 0) push!(history.backoff_steps, max_backoff_steps) empty!(history.last_line_L) empty!(history.last_line_loss) rate = one(T) step_success = false for backoff_steps in 0:max_backoff_steps history.stepsize[end] = rate L = L_last + rate * base_step Δ_proj = proj_diff(gram, L'*Q*L) loss = dot(Δ_proj, Δ_proj) improvement = loss_last - loss push!(history.last_line_L, L) push!(history.last_line_loss, loss / scale_adjustment) if improvement >= min_efficiency * rate * dot(neg_grad, base_step) history.backoff_steps[end] = backoff_steps step_success = true break end rate *= backoff end # if we've hit a wall, quit if !step_success return L_last, false, history end end # return the factorization and its history push!(history.scaled_loss, loss / scale_adjustment) L, loss < tol, history end end