include("HittingSet.jl") module Engine include("Engine.Algebraic.jl") include("Engine.Numerical.jl") using .Algebraic using .Numerical export Construction, mprod, codimension, dimension end # ~~~ sandbox setup ~~~ using Random using Distributions using LinearAlgebra using AbstractAlgebra using HomotopyContinuation using GLMakie CoeffType = Rational{Int64} ##a = Engine.Point{CoeffType}() ##s = Engine.Sphere{CoeffType}() ##a_on_s = Engine.LiesOn{CoeffType}(a, s) ##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ##ideal_a_s = Engine.realize(ctx) ##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom") ##b = Engine.Point{CoeffType}() ##b_on_s = Engine.LiesOn{CoeffType}(b, s) ##Engine.push!(ctx, b) ##Engine.push!(ctx, s) ##Engine.push!(ctx, b_on_s) ##ideal_ab_s, eqns_ab_s = Engine.realize(ctx) ##freedom = Engine.dimension(ideal_ab_s) ##println("Two points on a sphere: $freedom degrees of freedom") spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] tangencies = [ Engine.AlignsWithBy{CoeffType}( spheres[n], spheres[mod1(n+1, length(spheres))], CoeffType(-1)^n ) for n in 1:3 ] ##tangencies = [ ##Engine.LiesOn{CoeffType}(points[1], spheres[2]), ##Engine.LiesOn{CoeffType}(points[1], spheres[3]), ##Engine.LiesOn{CoeffType}(points[2], spheres[3]), ##Engine.LiesOn{CoeffType}(points[2], spheres[1]), ##Engine.LiesOn{CoeffType}(points[3], spheres[1]), ##Engine.LiesOn{CoeffType}(points[3], spheres[2]) ##] ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies) ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph) ##small_eqns_tan_sph = eqns_tan_sph ##small_eqns_tan_sph = [ ## eqns_tan_sph; ## spheres[2].coords - [1, 0, 0, 0, 1]; ## spheres[3].coords - [1, 0, 0, 0, -1]; ##] ##small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph) freedom = Engine.dimension(ideal_tan_sph) println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom") ##points = [Engine.Point{CoeffType}() for _ in 1:3] ##spheres = [Engine.Sphere{CoeffType}() for _ in 1:2] ##ctx_joined = Engine.Construction{CoeffType}( ## elements = Set([points; spheres]), ## relations= Set([ ## Engine.LiesOn{CoeffType}(pt, sph) ## for pt in points for sph in spheres ## ]) ##) ##ideal_joined, eqns_joined = Engine.realize(ctx_joined) ##freedom = Engine.dimension(ideal_joined) ##println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom") # --- test rational cut --- coordring = base_ring(ideal_tan_sph) vbls = Variable.(symbols(coordring)) # test a random witness set system = CompiledSystem(System(eqns_tan_sph, variables = vbls)) norm2 = vec -> real(dot(conj.(vec), vec)) rng = MersenneTwister(6701) n_planes = 6 samples = [] for _ in 1:n_planes real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng)) for soln in real_solns if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) push!(samples, soln) end end end println("$(length(samples)) sample solutions:") ##for soln in samples ## ## display([vbls round.(soln, digits = 6)]) ## [verbose] ## k_sq = abs2(soln[1]) ## if abs2(soln[end-2]) > 1e-12 ## if k_sq < 1e-12 ## println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))") ## else ## sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq ## println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))") ## end ## else ## sum_sq = sum(soln[[4, 7, 10]] .^ 2) ## println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") ## end ##end # show a sample solution function show_solution(ctx, vals) # evaluate elements real_vals = real.(vals) disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points] disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres] # create scene scene = Scene() cam3d!(scene) scatter!(scene, disp_points, color = :green) for sph in disp_spheres mesh!(scene, sph, color = :gray) end scene end