Compare commits

...

2 Commits

Author SHA1 Message Date
Aaron Fenyes
c29000d912 Write a simple solver for the hitting set problem
I think we need this to find the dimension of the solution variety.
2024-01-28 01:34:13 -05:00
Aaron Fenyes
86dbd9ea45 Order variables by coordinate and then element
In other words, order coordinates like
  (rₛ₁, rₛ₂, sₛ₁, sₛ₂, xₛ₁, xₛ₂, xₚ₃, yₛ₁, yₛ₂, yₚ₃, zₛ₁, zₛ₂, zₚ₃)
instead of like
  (rₛ₁, sₛ₁, xₛ₁, yₛ₁, zₛ₁, rₛ₂, sₛ₂, xₛ₂, yₛ₂, zₛ₂, xₚ₃, yₚ₃, zₚ₃).

In the test cases, this really cuts down the size of the Gröbner basis.
2024-01-27 14:21:03 -05:00
2 changed files with 167 additions and 19 deletions

View File

@ -12,46 +12,68 @@ using Groebner
abstract type Element{T} end
mutable struct Point{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Nothing
## [to do] constructor argument never needed?
Point{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
) where T = new(coords, vec, nothing)
end
coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
##coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
function buildvec(pt::Point, coordqueue)
coordring = parent(coordqueue[1])
pt.coords = splice!(coordqueue, 1:3)
function buildvec!(pt::Point)
coordring = parent(pt.coords[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Union{MPolyRingElem{T}, Nothing}
## [to do] constructor argument never needed?
Sphere{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
rel::Union{MPolyRingElem{T}, Nothing} = nothing
) where T = new(coords, vec, rel)
end
coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
##coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
function buildvec(sph::Sphere, coordqueue)
coordring = parent(coordqueue[1])
sph.coords = splice!(coordqueue, 1:5)
function buildvec!(sph::Sphere)
coordring = parent(sph.coords[1])
sph.vec = sph.coords
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
end
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
)
coordname(elem::Element, index) = coordnames[nameof(typeof(elem))][index]
function pushcoordname!(coordnamelist, indexed_elem::Tuple{Any, Element}, coordindex)
elemindex, elem = indexed_elem
name = coordname(elem, coordindex)
if !isnothing(name)
subscript = Subscripts.sub(string(elemindex))
push!(coordnamelist, Symbol(name, subscript))
end
end
function takecoord!(coordlist, indexed_elem::Tuple{Any, Element}, coordindex)
elem = indexed_elem[2]
if !isnothing(coordname(elem, coordindex))
push!(elem.coords, popfirst!(coordlist))
end
end
# --- primitive relations ---
abstract type Relation{T} end
@ -99,22 +121,38 @@ function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
end
function realize(ctx::Construction{T}) where T
# collect variable names
# collect coordinate names
coordnamelist = Symbol[]
elemenum = enumerate(ctx.elements)
for (index, elem) in elemenum
subscript = Subscripts.sub(string(index))
append!(coordnamelist,
[Symbol(name, subscript) for name in coordnames(elem)]
)
for coordindex in 1:5
for indexed_elem in elemenum
pushcoordname!(coordnamelist, indexed_elem, coordindex)
end
end
display(collect(elemenum))
display(coordnamelist)
println()
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
# retrieve coordinates
for (_, elem) in elemenum
empty!(elem.coords)
end
for coordindex in 1:5
for indexed_elem in elemenum
takecoord!(coordqueue, indexed_elem, coordindex)
end
end
# construct coordinate vectors
for (_, elem) in elemenum
buildvec(elem, coordqueue)
buildvec!(elem)
display(elem.coords)
display(elem.vec)
println()
end
# turn relations into equations

110
engine-proto/hitting-set.jl Normal file
View File

@ -0,0 +1,110 @@
module HittingSet
HittingSetProblem{T} = Pair{Set{T}, Vector{Pair{T, Set{Set{T}}}}}
# `subsets` should be a collection of Set objects
function HittingSetProblem(subsets, chosen = Set())
wholeset = union(subsets...)
T = eltype(wholeset)
unsorted_moves = [
elt => Set(filter(s -> elt s, subsets))
for elt in wholeset
]
moves = sort(unsorted_moves, by = pair -> length(pair.second))
Set{T}(chosen) => moves
end
function Base.display(problem::HittingSetProblem{T}) where T
println("HittingSetProblem{$T}")
chosen = problem.first
println(" {", join(string.(chosen), ", "), "}")
moves = problem.second
for (choice, missed) in moves
println(" | ", choice)
for s in missed
println(" | | {", join(string.(s), ", "), "}")
end
end
println()
end
function solve(pblm::HittingSetProblem{T}, maxdepth = Inf) where T
problems = Dict(pblm)
println(typeof(problems))
while length(first(problems).first) < maxdepth
subproblems = typeof(problems)()
for (chosen, moves) in problems
if isempty(moves)
return chosen
else
for (choice, missed) in moves
to_be_chosen = union(chosen, Set([choice]))
if isempty(missed)
return to_be_chosen
elseif !haskey(subproblems, to_be_chosen)
push!(subproblems, HittingSetProblem(missed, to_be_chosen))
end
end
end
end
problems = subproblems
end
problems
end
function test(n = 1)
T = [Int64, Int64, Symbol, Symbol][n]
subsets = Set{T}.([
[
[1, 3, 5],
[2, 3, 4],
[1, 4],
[2, 3, 4, 5],
[4, 5]
],
# example from Amit Chakrabarti's graduate-level algorithms class (CS 105)
# notes by Valika K. Wan and Khanh Do Ba, Winter 2005
# https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/
[
[1, 3], [1, 4], [1, 5],
[1, 3], [1, 2, 4], [1, 2, 5],
[4, 3], [ 2, 4], [ 2, 5],
[6, 3], [6, 4], [ 5]
],
[
[:w, :x, :y],
[:x, :y, :z],
[:w, :z],
[:x, :y]
],
# Wikipedia showcases this as an example of a problem where the greedy
# algorithm performs especially poorly
[
[:a, :x, :t1],
[:a, :y, :t2],
[:a, :y, :t3],
[:a, :z, :t4],
[:a, :z, :t5],
[:a, :z, :t6],
[:a, :z, :t7],
[:b, :x, :t8],
[:b, :y, :t9],
[:b, :y, :t10],
[:b, :z, :t11],
[:b, :z, :t12],
[:b, :z, :t13],
[:b, :z, :t14]
]
][n])
problem = HittingSetProblem(subsets)
if isa(problem, HittingSetProblem{T})
println("Correct type")
else
println("Wrong type: ", typeof(problem))
end
problem
end
end