Compare commits

...

78 Commits

Author SHA1 Message Date
Aaron Fenyes
d7dbee4c05 Stow algebraic engine prototype
We're using the Gram matrix engine for the next stage of development,
so the algebraic engine shouldn't be at the top level anymore.
2024-07-28 20:50:04 -07:00
Aaron Fenyes
9d69a900e2 Irisawa hexlet: use Abe's terminology in comments
Abe uses the names "sun" and "moon" for what Wikipedia calls the nucleus
spheres.
2024-07-18 03:39:41 -07:00
Aaron Fenyes
8a77cd7484 Irisawa hexlet: drop unviable approach
The approach in the deleted file can't work, because the "sun" and
"moon" spheres can't be placed arbitrarily.
2024-07-18 03:21:46 -07:00
Aaron Fenyes
a26f1e3927 Add Irisawa hexlet example
Hat tip Romy, who sent me the article on sangaku that led me to this
problem.
2024-07-18 03:16:57 -07:00
Aaron Fenyes
19a4d49497 Clean up example formatting 2024-07-18 01:48:05 -07:00
Aaron Fenyes
71c10adbdd Overlapping pyramids: drop outdated comment 2024-07-18 01:12:49 -07:00
Aaron Fenyes
33c09917d0 Correct scope of guess constants 2024-07-18 01:05:13 -07:00
Aaron Fenyes
b24dcc9af8 Report success correctly when step limit is reached 2024-07-18 01:04:40 -07:00
Aaron Fenyes
b040bbb7fe Drop old code from examples 2024-07-18 00:50:48 -07:00
Aaron Fenyes
9007c8bc7c Circles in triangle: jiggle the guess 2024-07-18 00:49:09 -07:00
Aaron Fenyes
a7f9545a37 Circles in triangle: correct frozen variables
Since the self-product of the point at infinity is left unspecified, the
first three components can vary without violating any constraints. To
keep the point at infinity where it's supposed to be, we freeze all of
its components.
2024-07-18 00:43:00 -07:00
Aaron Fenyes
3764fde2f6 Clean up formatting of notes 2024-07-18 00:27:10 -07:00
Aaron Fenyes
24dae6807b Clarify notes on tangency 2024-07-18 00:16:23 -07:00
Aaron Fenyes
74c7f64b0c Correct sign of normal in plane utility
Clarify the relevant notes too.
2024-07-18 00:03:12 -07:00
Aaron Fenyes
d0340c0b65 Correct point utility again
The balance between the light cone basis vectors was wrong, throwing the
point's coordinates off by a factor of two.
2024-07-17 23:37:28 -07:00
Aaron Fenyes
69a704d414 Use notes' sign convention for light cone basis 2024-07-17 23:07:34 -07:00
Aaron Fenyes
01f44324c1 Tetrahedron radius ratio: find radius ratio 2024-07-17 22:45:17 -07:00
Aaron Fenyes
96ffc59642 Tetrahedron radius ratio: tweak guess
Jiggle the vertex guesses. Put the circumscribed sphere guess on-shell.
2024-07-17 19:01:34 -07:00
Aaron Fenyes
a02b76544a Tetrahedron radius ratio: add circumscribed sphere 2024-07-17 18:55:36 -07:00
Aaron Fenyes
6e719f9943 Tetrahedron radius ratio: correct vertex guesses 2024-07-17 18:27:58 -07:00
Aaron Fenyes
d51d43f481 Correct point utility 2024-07-17 18:27:22 -07:00
Aaron Fenyes
6d233b5ee9 Tetrahedron radius ratio: correct signs 2024-07-17 18:08:36 -07:00
Aaron Fenyes
5abd4ca6e1 Revert "Give spheres positive radii in examples"
This reverts commit 4728959ae0, which
actually gave the spheres negative radii! I got confused by the sign
convention differences between the notes and the engine.
2024-07-17 17:49:43 -07:00
Aaron Fenyes
ea640f4861 Start tetrahedron radius ratio example
Add the vertices of the tetrahedron to the `sphere-in-tetrahedron`
example.
2024-07-17 17:33:32 -07:00
Aaron Fenyes
4728959ae0 Give spheres positive radii in examples
This changes the meaning of `indep_val` in the overlapping pyramids
example, so we adjust `indep_val` to get a nice-looking construction.
2024-07-17 17:22:33 -07:00
Aaron Fenyes
2038103d80 Write examples directly in light cone basis 2024-07-17 15:37:14 -07:00
Aaron Fenyes
bde42ebac0 Switch engine to light cone basis 2024-07-17 14:30:43 -07:00
Aaron Fenyes
e6cf08a9b3 Make tetrahedron faces planar 2024-07-15 23:54:59 -07:00
Aaron Fenyes
7c77481f5e Don't constrain self-product of frozen vector 2024-07-15 23:39:05 -07:00
Aaron Fenyes
1ce609836b Implement frozen variables 2024-07-15 22:11:54 -07:00
Aaron Fenyes
b185fd4b83 Switch to backtracking Newton's method in Optim
This performs much better than the trust region Newton's method for the
actual `circles-in-triangle` problem. (The trust region method performs
better for the simplified problem produced by the conversion bug.)
2024-07-15 15:52:38 -07:00
Aaron Fenyes
94e0d321d5 Switch back to BigFloat precision in examples 2024-07-15 14:31:30 -07:00
Aaron Fenyes
53d8c38047 Preserve explicit zeros in Gram matrix conversion
In previous commits, the `circles-in-triangle` example converged much
more slowly in BigFloat precision than in Float64 precision. This
turned out to be a sign of a bug in the Float64 computation: converting
the Gram matrix using `Float64.()` dropped the explicit zeros, removing
many constraints and making the problem much easier to solve. This
commit corrects the Gram matrix conversion. The Float64 search now
solves the same problem as the BigFloat search, with comparable
performance.
2024-07-15 14:08:57 -07:00
Aaron Fenyes
7b3efbc385 Clean up backtracking gradient descent code
Drop experimental singularity handling strategies. Reduce the default
tolerance to within 64-bit floating point precision. Report success.
2024-07-15 13:15:15 -07:00
Aaron Fenyes
25b09ebf92 Sketch backtracking Newton's method
This code is a mess, but I'm committing it to record a working state
before I start trying to clean up.
2024-07-15 11:32:04 -07:00
Aaron Fenyes
3910b9f740 Use Newton's method for polishing 2024-07-11 13:43:52 -07:00
Aaron Fenyes
d538cbf716 Correct improvement threshold by using unit step
Our formula for the improvement theshold works when the step size is
an absolute distance. However, in commit `4d5ea06`, the step size was
measured relative to the current gradient instead. This commit scales
the base step to unit length, so now the step size really is an absolute
distance.
2024-07-10 23:31:44 -07:00
Aaron Fenyes
4d5ea062a3 Record gradient and last line search in history 2024-07-09 15:00:13 -07:00
Aaron Fenyes
5652719642 Require triangle sides to be planar 2024-07-09 14:10:23 -07:00
Aaron Fenyes
f84d475580 Visualize neighborhoods of global minima 2024-07-09 14:01:30 -07:00
Aaron Fenyes
77bc124170 Change loss function to match gradient 2024-07-09 14:00:24 -07:00
Aaron Fenyes
023759a267 Start "circles in triangle" from a very close guess 2024-07-08 14:21:10 -07:00
Aaron Fenyes
610fc451f0 Track slope in gradient descent history 2024-07-08 14:19:25 -07:00
Aaron Fenyes
93dd05c317 Add required package to "sphere in tetrahedron" example 2024-07-08 14:19:05 -07:00
Aaron Fenyes
9efa99e8be Test gradient descent for circles in triangle 2024-07-08 12:56:28 -07:00
Aaron Fenyes
828498b3de Add sphere and plane utilities to engine 2024-07-08 12:56:14 -07:00
Aaron Fenyes
736ac50b07 Test gradient descent for sphere in tetrahedron 2024-07-07 17:58:55 -07:00
Aaron Fenyes
ea354b6c2b Randomize guess in gradient descent test
Randomly perturb the pre-solved part of the guess, and randomly choose
the unsolved part.
2024-07-07 17:56:12 -07:00
Aaron Fenyes
d39244d308 Host Ganja.js locally 2024-07-06 21:35:09 -07:00
Aaron Fenyes
7e94fef19e Improve random vector generator 2024-07-06 21:32:43 -07:00
Aaron Fenyes
abc53b4705 Sketch random vector generator
This needs to be rewritten: it can fail at generating spacelike vectors.
2024-07-02 17:16:31 -07:00
Aaron Fenyes
17fefff61e Name gradient descent test more specifically 2024-07-02 17:16:19 -07:00
Aaron Fenyes
133519cacb Encapsulate gradient descent code
The completed gram matrix from this commit matches the one from commit
e7dde58 to six decimal places.
2024-07-02 15:02:59 -07:00
Aaron Fenyes
e7dde5800c Do gradient descent entirely in BigFloat
The previos version accidentally returned steps in Float64.
2024-07-02 12:35:12 -07:00
Aaron Fenyes
242d630cc6 Get Ganja.js to display planes 2024-06-27 21:49:53 -07:00
Aaron Fenyes
8eb1ebb8d2 Merge branch 'ganja' into gram 2024-06-26 15:57:07 -07:00
Aaron Fenyes
05a824834d Let visibility controls scroll 2024-06-26 15:56:51 -07:00
Aaron Fenyes
a113f33635 Merge branch 'ganja' into gram
Get visibility controls.
2024-06-26 15:52:20 -07:00
Aaron Fenyes
5ea32ac53c Streamline visibility controls 2024-06-26 15:51:57 -07:00
Aaron Fenyes
3eb4fc6c91 Add element visibility controls 2024-06-26 15:24:31 -07:00
Aaron Fenyes
7aaf134a36 Size the viewer window automatically 2024-06-26 13:15:54 -07:00
Aaron Fenyes
c933e07312 Switch to Ganja.js basis ordering 2024-06-26 11:39:34 -07:00
Aaron Fenyes
2b6c4f4720 Avoid naming conflict with identity transformation 2024-06-26 11:28:47 -07:00
Aaron Fenyes
5aadfecf6c Merge branch 'ganja' into gram
Visualize low-rank factorization results.
2024-06-26 11:12:24 -07:00
Aaron Fenyes
4a28a47520 Update namespace of AbstractAlgebra.Rationals 2024-06-26 01:06:27 -07:00
Aaron Fenyes
a3b1f4920c Build construction viewer module 2024-06-26 00:41:21 -07:00
Aaron Fenyes
665cb30ce0 Correct indentation of CSS 2024-06-25 23:31:00 -07:00
Aaron Fenyes
182b5bb9f6 Generate palette automatically 2024-06-25 17:57:16 -07:00
Aaron Fenyes
b7b5b9386b Load elements from Julia into Ganja.js 2024-06-25 16:30:19 -07:00
Aaron Fenyes
06a9dda5bb Play with reflections
Try configuration of five tangent spheres.
2024-06-25 13:40:40 -07:00
Aaron Fenyes
69a9baa8ee Add live updates to Ganja.js visualization 2024-06-25 03:11:50 -07:00
Aaron Fenyes
3b10c95d5f Clean up examples
Declare JavaScript variables. Revise Julia comments to match new code.
2024-06-25 02:58:39 -07:00
Aaron Fenyes
3c34481519 Get familiar with Ganja.js inline syntax 2024-06-25 01:54:01 -07:00
Aaron Fenyes
d1ce91d2aa Get a Ganja.js visualization running in Blink 2024-06-24 19:37:57 -07:00
Aaron Fenyes
58a5c38e62 Try numerical low-rank factorization
The best technique I've found so far is the homemade gradient descent
routine in `descent-test.jl`.
2024-05-30 00:36:03 -07:00
Aaron Fenyes
ef33b8ee10 Correct signature 2024-03-01 13:26:20 -05:00
Aaron Fenyes
717e5a6200 Extend Gram matrix automatically
The signature of the Minkowski form on the subspace spanned by the Gram
matrix should tell us what the big Gram matrix has to look like
2024-02-21 03:00:06 -05:00
Aaron Fenyes
16826cf07c Try out the Gram matrix approach 2024-02-20 22:35:24 -05:00
20 changed files with 3521 additions and 8 deletions

View File

@ -0,0 +1,223 @@
module Viewer
using Blink
using Colors
using Printf
using Main.Engine
export ConstructionViewer, display!, opentools!, closetools!
# === Blink utilities ===
append_to_head!(w, type, content) = @js w begin
@var element = document.createElement($type)
element.appendChild(document.createTextNode($content))
document.head.appendChild(element)
end
style!(w, stylesheet) = append_to_head!(w, "style", stylesheet)
script!(w, code) = append_to_head!(w, "script", code)
# === construction viewer ===
mutable struct ConstructionViewer
win::Window
function ConstructionViewer()
# create window and open developer console
win = Window(Blink.Dict(:width => 620, :height => 830))
# set stylesheet
style!(win, """
body {
background-color: #ccc;
}
/* the maximum dimensions keep Ganja from blowing up the canvas */
#view {
display: block;
width: 600px;
height: 600px;
margin-top: 10px;
margin-left: 10px;
border-radius: 10px;
background-color: #f0f0f0;
}
#control-panel {
width: 600px;
height: 200px;
box-sizing: border-box;
padding: 5px 10px 5px 10px;
margin-top: 10px;
margin-left: 10px;
overflow-y: scroll;
border-radius: 10px;
background-color: #f0f0f0;
}
#control-panel > div {
margin-top: 5px;
padding: 4px;
border-radius: 5px;
border: solid;
font-family: monospace;
}
""")
# load Ganja.js. for an automatically updated web-hosted version, load from
#
# https://unpkg.com/ganja.js
#
# instead
loadjs!(win, "http://localhost:8000/ganja-1.0.204.js")
# create global functions and variables
script!(win, """
// create algebra
var CGA3 = Algebra(4, 1);
// initialize element list and palette
var elements = [];
var palette = [];
// declare handles for the view and its options
var view;
var viewOpt;
// declare handles for the controls
var controlPanel;
var visToggles;
// create scene function
function scene() {
commands = [];
for (let n = 0; n < elements.length; ++n) {
if (visToggles[n].checked) {
commands.push(palette[n], elements[n]);
}
}
return commands;
}
function updateView() {
requestAnimationFrame(view.update.bind(view, scene));
}
""")
@js win begin
# create view
viewOpt = Dict(
:conformal => true,
:gl => true,
:devicePixelRatio => window.devicePixelRatio
)
view = CGA3.graph(scene, viewOpt)
view.setAttribute(:id, "view")
view.removeAttribute(:style)
document.body.replaceChildren(view)
# create control panel
controlPanel = document.createElement(:div)
controlPanel.setAttribute(:id, "control-panel")
document.body.appendChild(controlPanel)
end
new(win)
end
end
mprod(v, w) =
v[1]*w[1] + v[2]*w[2] + v[3]*w[3] + v[4]*w[4] - v[5]*w[5]
function display!(viewer::ConstructionViewer, elements::Matrix)
# load elements
elements_full = []
for elt in eachcol(Engine.unmix * elements)
if mprod(elt, elt) < 0.5
elt_full = [0; elt; fill(0, 26)]
else
# `elt` is a spacelike vector, representing a generalized sphere, so we
# take its Hodge dual before passing it to Ganja.js. the dual represents
# the same generalized sphere, but Ganja.js only displays planes when
# they're represented by vectors in grade 4 rather than grade 1
elt_full = [fill(0, 26); -elt[5]; -elt[4]; elt[3]; -elt[2]; elt[1]; 0]
end
push!(elements_full, elt_full)
end
@js viewer.win elements = $elements_full.map((elt) -> @new CGA3(elt))
# generate palette. this is Gadfly's `default_discrete_colors` palette,
# available under the MIT license
palette = distinguishable_colors(
length(elements_full),
[LCHab(70, 60, 240)],
transform = c -> deuteranopic(c, 0.5),
lchoices = Float64[65, 70, 75, 80],
cchoices = Float64[0, 50, 60, 70],
hchoices = range(0, stop=330, length=24)
)
palette_packed = [RGB24(c).color for c in palette]
@js viewer.win palette = $palette_packed
# create visibility toggles
@js viewer.win begin
controlPanel.replaceChildren()
visToggles = []
end
for (elt, c) in zip(eachcol(elements), palette)
vec_str = join(map(t -> @sprintf("%.3f", t), elt), ", ")
color_str = "#$(hex(c))"
style_str = "background-color: $color_str; border-color: $color_str;"
@js viewer.win begin
@var toggle = document.createElement(:div)
toggle.setAttribute(:style, $style_str)
toggle.checked = true
toggle.addEventListener(
"click",
() -> begin
toggle.checked = !toggle.checked
toggle.style.backgroundColor = toggle.checked ? $color_str : "inherit";
updateView()
end
)
toggle.appendChild(document.createTextNode($vec_str))
visToggles.push(toggle);
controlPanel.appendChild(toggle);
end
end
# update view
@js viewer.win updateView()
end
function opentools!(viewer::ConstructionViewer)
size(viewer.win, 1240, 830)
opentools(viewer.win)
end
function closetools!(viewer::ConstructionViewer)
closetools(viewer.win)
size(viewer.win, 620, 830)
end
end
# ~~~ sandbox setup ~~~
elements = let
a = sqrt(BigFloat(3)/2)
sqrt(0.5) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0.5 0.5 0.5 0.5 1+a
0.5 0.5 0.5 0.5 1-a
]
end
# show construction
viewer = Viewer.ConstructionViewer()
Viewer.display!(viewer, elements)

View File

@ -0,0 +1,96 @@
<!DOCTYPE html>
<html>
<head>
<style>
body {
background-color: #ffe0f0;
}
/* needed to keep Ganja canvas from blowing up */
canvas {
min-width: 600px;
max-width: 600px;
min-height: 600px;
max-height: 600px;
}
</style>
<script src="https://unpkg.com/ganja.js"></script>
</head>
<body>
<p><button onclick="flip()">Flip</button></p>
<script>
// in the default view, e4 + e5 is the point at infinity
let CGA3 = Algebra(4, 1);
let elements = [
CGA3.inline(() => Math.sqrt(0.5)*( 1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*( 1e1 - 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*(-1e1 + 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*(-1e1 - 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => -Math.sqrt(3)*1e4 + Math.sqrt(2)*1e5)()
];
/*
these blocks of commented-out code can be used to confirm that a spacelike
vector and its Hodge dual represent the same generalized sphere
*/
/*let elements = [
CGA3.inline(() => Math.sqrt(0.5)*!( 1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!( 1e1 - 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(-1e1 + 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(-1e1 - 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => !(-Math.sqrt(3)*1e4 + Math.sqrt(2)*1e5))()
];*/
/*let elements = [
CGA3.inline(() => 1e1 + 1e5)(),
CGA3.inline(() => 1e2 + 1e5)(),
CGA3.inline(() => 1e3 + 1e5)(),
CGA3.inline(() => -1e4 + 1e5)(),
CGA3.inline(() => Math.sqrt(0.5)*(1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(1e1 + 1e2 + 1e3 - 0.01e4 + 1e5))()
];*/
// set up palette
var colorIndex;
var palette = [0xff00b0, 0x00ffb0, 0x00b0ff, 0x8040ff, 0xc0c0c0];
function nextColor() {
colorIndex = (colorIndex + 1) % palette.length;
return palette[colorIndex];
}
function resetColorCycle() {
colorIndex = palette.length - 1;
}
resetColorCycle();
// create scene function
function scene() {
commands = [];
resetColorCycle();
elements.forEach((elt) => commands.push(nextColor(), elt));
return commands;
}
// initialize graph
let graph = CGA3.graph(
scene,
{
conformal: true, gl: true, grid: true
}
)
document.body.appendChild(graph);
function flip() {
let last = elements.length - 1;
for (let n = 0; n < last; ++n) {
// reflect
elements[n] = CGA3.Mul(CGA3.Mul(elements[last], elements[n]), elements[last]);
// de-noise
for (let k = 6; k < elements[n].length; ++k) {
/*for (let k = 0; k < 26; ++k) {*/
elements[n][k] = 0;
}
}
requestAnimationFrame(graph.update.bind(graph, scene));
}
</script>
</body>
</html>

View File

@ -0,0 +1,127 @@
using Blink
using Colors
# === utilities ===
append_to_head!(w, type, content) = @js w begin
@var element = document.createElement($type)
element.appendChild(document.createTextNode($content))
document.head.appendChild(element)
end
style!(w, stylesheet) = append_to_head!(w, "style", stylesheet)
script!(w, code) = append_to_head!(w, "script", code)
function add_element!(vec)
# add element
full_vec = [0; vec; fill(0, 26)]
n = @js win elements.push(@new CGA3($full_vec))
# generate palette. this is Gadfly's `default_discrete_colors` palette,
# available under the MIT license
palette = distinguishable_colors(
n,
[LCHab(70, 60, 240)],
transform = c -> deuteranopic(c, 0.5),
lchoices = Float64[65, 70, 75, 80],
cchoices = Float64[0, 50, 60, 70],
hchoices = range(0, stop=330, length=24)
)
palette_packed = [RGB24(c).color for c in palette]
@js win palette = $palette_packed
end
# === build page ===
# create window and open developer console
win = Window()
opentools(win)
# set stylesheet
style!(win, """
body {
background-color: #ffe0f0;
}
/* needed to keep Ganja canvas from blowing up */
canvas {
min-width: 600px;
max-width: 600px;
min-height: 600px;
max-height: 600px;
}
""")
# load Ganja.js
loadjs!(win, "https://unpkg.com/ganja.js")
# create global functions and variables
script!(win, """
// create algebra
var CGA3 = Algebra(4, 1);
// initialize element list and palette
var elements = [];
var palette = [];
// declare visualization handle
var graph;
// create scene function
function scene() {
commands = [];
for (let n = 0; n < elements.length; ++n) {
commands.push(palette[n], elements[n]);
}
return commands;
}
function flip() {
let last = elements.length - 1;
for (let n = 0; n < last; ++n) {
// reflect
elements[n] = CGA3.Mul(CGA3.Mul(elements[last], elements[n]), elements[last]);
// de-noise
for (let k = 6; k < elements[n].length; ++k) {
elements[n][k] = 0;
}
}
requestAnimationFrame(graph.update.bind(graph, scene));
}
""")
# set up controls
body!(win, """
<p><button id="flip-button" onclick="flip()">Flip</button></p>
""", async = false)
# === set up visualization ===
# list elements. in the default view, e4 + e5 is the point at infinity
elements = sqrt(0.5) * BigFloat[
1 1 -1 -1 0;
1 -1 1 -1 0;
1 -1 -1 1 0;
0 0 0 0 -sqrt(6);
1 1 1 1 2
]
# load elements
for vec in eachcol(elements)
add_element!(vec)
end
# initialize visualization
@js win begin
graph = CGA3.graph(
scene,
Dict(
"conformal" => true,
"gl" => true,
"grid" => true
)
)
document.body.appendChild(graph)
end

View File

@ -0,0 +1,451 @@
module Engine
using LinearAlgebra
using GenericLinearAlgebra
using SparseArrays
using Random
using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
# === guessing ===
sconh(t, u) = 0.5*(exp(t) + u*exp(-t))
function rand_on_sphere(rng::AbstractRNG, ::Type{T}, n) where T
out = randn(rng, T, n)
tries_left = 2
while dot(out, out) < 1e-6 && tries_left > 0
out = randn(rng, T, n)
tries_left -= 1
end
normalize(out)
end
##[TO DO] write a test to confirm that the outputs are on the correct shells
function rand_on_shell(rng::AbstractRNG, shell::T) where T <: Number
space_part = rand_on_sphere(rng, T, 4)
rapidity = randn(rng, T)
sig = sign(shell)
nullmix * [sconh(rapidity, sig)*space_part; sconh(rapidity, -sig)]
end
rand_on_shell(rng::AbstractRNG, shells::Array{T}) where T <: Number =
hcat([rand_on_shell(rng, sh) for sh in shells]...)
rand_on_shell(shells::Array{<:Number}) = rand_on_shell(Random.default_rng(), shells)
# === elements ===
point(pos) = [pos; 0.5; 0.5 * dot(pos, pos)]
plane(normal, offset) = [-normal; 0; -offset]
function sphere(center, radius)
dist_sq = dot(center, center)
[
center / radius;
0.5 / radius;
0.5 * (dist_sq / radius - radius)
]
end
# === Gram matrix realization ===
# basis changes
nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]//2]
unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]]
# the Lorentz form
## [old] Q = diagm([1, 1, 1, 1, -1])
Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]]
# project a matrix onto the subspace of matrices whose entries vanish at the
# given indices
function proj_to_entries(mat, indices)
result = zeros(size(mat))
for (j, k) in indices
result[j, k] = mat[j, k]
end
result
end
# the difference between the matrices `target` and `attempt`, projected onto the
# subspace of matrices whose entries vanish at each empty index of `target`
function proj_diff(target::SparseMatrixCSC{T, <:Any}, attempt::Matrix{T}) where T
J, K, values = findnz(target)
result = zeros(size(target))
for (j, k, val) in zip(J, K, values)
result[j, k] = val - attempt[j, k]
end
result
end
# a type for keeping track of gradient descent history
struct DescentHistory{T}
scaled_loss::Array{T}
neg_grad::Array{Matrix{T}}
base_step::Array{Matrix{T}}
hess::Array{Hermitian{T, Matrix{T}}}
slope::Array{T}
stepsize::Array{T}
positive::Array{Bool}
backoff_steps::Array{Int64}
last_line_L::Array{Matrix{T}}
last_line_loss::Array{T}
function DescentHistory{T}(
scaled_loss = Array{T}(undef, 0),
neg_grad = Array{Matrix{T}}(undef, 0),
hess = Array{Hermitian{T, Matrix{T}}}(undef, 0),
base_step = Array{Matrix{T}}(undef, 0),
slope = Array{T}(undef, 0),
stepsize = Array{T}(undef, 0),
positive = Bool[],
backoff_steps = Int64[],
last_line_L = Array{Matrix{T}}(undef, 0),
last_line_loss = Array{T}(undef, 0)
) where T
new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, positive, backoff_steps, last_line_L, last_line_loss)
end
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram_gradient(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_stepsize = 1.0,
backoff = 0.9,
max_descent_steps = 600,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# scale tolerance
scale_adjustment = sqrt(T(nnz(gram)))
tol = scale_adjustment * scaled_tol
# initialize variables
stepsize = init_stepsize
L = copy(guess)
# do gradient descent
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for _ in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
# store current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, slope)
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = stepsize
L = L_last + stepsize * dir
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * stepsize * slope
history.backoff_steps[end] = backoff_steps
break
end
stepsize *= backoff
end
# [DEBUG] if we've hit a wall, quit
if history.backoff_steps[end] == max_backoff_steps
break
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, history
end
function basis_matrix(::Type{T}, j, k, dims) where T
result = zeros(T, dims)
result[j, k] = one(T)
result
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use Newton's method starting from `guess`
function realize_gram_newton(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
rate = 1,
max_steps = 100
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# use Newton's method
L = copy(guess)
for step in 0:max_steps
# evaluate the loss function
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# store the current loss
push!(history.scaled_loss, loss / scale_adjustment)
# stop if the loss is tolerably low
if loss < tol || step > max_steps
break
end
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# compute the Newton step
step = hess \ reshape(neg_grad, total_dim)
L += rate * reshape(step, dims)
end
# return the factorization and its history
L, history
end
LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) =
eigen!(Hermitian(A))
function convertnz(type, mat)
J, K, values = findnz(mat)
sparse(J, K, type.(values))
end
function realize_gram_optim(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T}
) where T <: Number
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the loss function
scale_adjustment = length(constrained)
function loss(L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
dot(Δ_proj, Δ_proj) / scale_adjustment
end
function loss_grad!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment
end
function loss_hess!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment
storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
end
optimize(
loss, loss_grad!, loss_hess!,
reshape(guess, total_dim),
Newton()
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = nothing;
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# list the un-frozen indices
has_frozen = !isnothing(frozen)
if has_frozen
is_unfrozen = fill(true, size(guess))
is_unfrozen[frozen] .= false
unfrozen = findall(is_unfrozen)
unfrozen_stacked = reshape(is_unfrozen, total_dim)
end
# initialize variables
grad_rate = init_rate
L = copy(guess)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# regularize the Hessian
min_eigval = minimum(eigvals(hess))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
if has_frozen
hess = hess[unfrozen_stacked, unfrozen_stacked]
neg_grad_compressed = neg_grad_stacked[unfrozen_stacked]
else
neg_grad_compressed = neg_grad_stacked
end
base_step_compressed = hess \ neg_grad_compressed
if has_frozen
base_step_stacked = zeros(total_dim)
base_step_stacked[unfrozen_stacked] .= base_step_compressed
else
base_step_stacked = base_step_compressed
end
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
end

View File

@ -0,0 +1,99 @@
include("Engine.jl")
using LinearAlgebra
using SparseArrays
function sphere_in_tetrahedron_shape()
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:5
for k in 1:5
push!(J, j)
push!(K, k)
if j == k
push!(values, 1)
elseif (j <= 4 && k <= 4)
push!(values, -1/BigFloat(3))
else
push!(values, -1)
end
end
end
gram = sparse(J, K, values)
# plot loss along a slice
loss_lin = []
loss_sq = []
mesh = range(0.9, 1.1, 101)
for t in mesh
L = hcat(
Engine.plane(normalize(BigFloat[ 1, 1, 1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[ 1, -1, -1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[-1, 1, -1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[-1, -1, 1]), BigFloat(1)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(t))
)
Δ_proj = Engine.proj_diff(gram, L'*Engine.Q*L)
push!(loss_lin, norm(Δ_proj))
push!(loss_sq, dot(Δ_proj, Δ_proj))
end
mesh, loss_lin, loss_sq
end
function circles_in_triangle_shape()
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:8
for k in 1:8
filled = false
if j == k
push!(values, 1)
filled = true
elseif (j == 1 || k == 1)
push!(values, 0)
filled = true
elseif (j == 2 || k == 2)
push!(values, -1)
filled = true
end
#=elseif (j <= 5 && j != 2 && k == 9 || k == 9 && k <= 5 && k != 2)
push!(values, 0)
filled = true
end=#
if filled
push!(J, j)
push!(K, k)
end
end
end
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
append!(values, fill(-1, 12))
# plot loss along a slice
loss_lin = []
loss_sq = []
mesh = range(0.99, 1.01, 101)
for t in mesh
L = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(t)),
Engine.plane(BigFloat[1, 0, 0], BigFloat(1)),
Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)),
Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)),
Engine.sphere(4//3*BigFloat[-1, 0, 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3))
)
Δ_proj = Engine.proj_diff(gram, L'*Engine.Q*L)
push!(loss_lin, norm(Δ_proj))
push!(loss_sq, dot(Δ_proj, Δ_proj))
end
mesh, loss_lin, loss_sq
end

View File

@ -0,0 +1,76 @@
include("Engine.jl")
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:9
for k in 1:9
filled = false
if j == 9
if k <= 5 && k != 2
push!(values, 0)
filled = true
end
elseif k == 9
if j <= 5 && j != 2
push!(values, 0)
filled = true
end
elseif j == k
push!(values, 1)
filled = true
elseif j == 1 || k == 1
push!(values, 0)
filled = true
elseif j == 2 || k == 2
push!(values, -1)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
append!(values, fill(-1, 12))
#= make construction rigid
append!(J, [3, 4, 4, 5])
append!(K, [4, 3, 5, 4])
append!(values, fill(-0.5, 4))
=#
gram = sparse(J, K, values)
# set initial guess
Random.seed!(58271)
guess = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[1, 0, 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
BigFloat[0, 0, 0, 0, 1]
)
frozen = [CartesianIndex(j, 9) for j in 1:5]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,85 @@
using LinearAlgebra
using AbstractAlgebra
function printgood(msg)
printstyled("", color = :green)
println(" ", msg)
end
function printbad(msg)
printstyled("", color = :red)
println(" ", msg)
end
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["a₁", "a₂", "b₁", "b₂", "c₁", "c₂"])
a = gens[1:2]
b = gens[3:4]
c = gens[5:6]
# three mutually tangent spheres which are all perpendicular to the x, y plane
gram = [
-1 1 1;
1 -1 1;
1 1 -1
]
eig = eigen(gram)
n_pos = count(eig.values .> 0.5)
n_neg = count(eig.values .< -0.5)
if n_pos + n_neg == size(gram, 1)
printgood("Non-degenerate subspace")
else
printbad("Degenerate subspace")
end
sig_rem = Int64[ones(1-n_pos); -ones(4-n_neg)]
unk = hcat(a, b, c)
M = matrix_space(F, 5, 5)
big_gram = M(F.([
diagm(sig_rem) unk;
transpose(unk) gram
]))
r, p, L, U = lu(big_gram)
if isone(p)
printgood("Found a solution")
else
printbad("Didn't find a solution")
end
solution = transpose(L)
mform = U * inv(solution)
vals = [0, 0, 0, 1, 0, -3//4]
solution_ex = [evaluate(entry, vals) for entry in solution]
mform_ex = [evaluate(entry, vals) for entry in mform]
std_basis = [
0 0 0 1 1;
0 0 0 1 -1;
1 0 0 0 0;
0 1 0 0 0;
0 0 1 0 0
]
std_solution = M(F.(std_basis)) * solution
std_solution_ex = std_basis * solution_ex
println("Minkowski form:")
display(mform_ex)
big_gram_recovered = transpose(solution_ex) * mform_ex * solution_ex
valid = all(iszero.(
[evaluate(entry, vals) for entry in big_gram] - big_gram_recovered
))
if valid
printgood("Recovered Gram matrix:")
else
printbad("Didn't recover Gram matrix. Instead, got:")
end
display(big_gram_recovered)
# this should be a solution
hand_solution = [0 0 1 0 0; 0 0 -1 2 2; 0 0 0 1 -1; 1 0 0 0 0; 0 1 0 0 0]
unmix = Rational{Int64}[[1//2 1//2; 1//2 -1//2] zeros(Int64, 2, 3); zeros(Int64, 3, 2) Matrix{Int64}(I, 3, 3)]
hand_solution_diag = unmix * hand_solution
big_gram_hand_recovered = transpose(hand_solution_diag) * diagm([1; -ones(Int64, 4)]) * hand_solution_diag
println("Gram matrix from hand-written solution:")
display(big_gram_hand_recovered)

View File

@ -0,0 +1,27 @@
F = QQ['a', 'b', 'c'].fraction_field()
a, b, c = F.gens()
# three mutually tangent spheres which are all perpendicular to the x, y plane
gram = matrix([
[-1, 0, 0, 0, 0],
[0, -1, a, b, c],
[0, a, -1, 1, 1],
[0, b, 1, -1, 1],
[0, c, 1, 1, -1]
])
P, L, U = gram.LU()
solution = (P * L).transpose()
mform = U * L.transpose().inverse()
concrete = solution.subs({a: 0, b: 1, c: -3/4})
std_basis = matrix([
[0, 0, 0, 1, 1],
[0, 0, 0, 1, -1],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0]
])
std_solution = std_basis * solution
std_concrete = std_basis * concrete

View File

@ -0,0 +1,77 @@
include("Engine.jl")
using SparseArrays
# this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article below
# includes a nice translation of the problem statement, which was recorded in
# Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and Present_)
#
# "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
# https://www.nippon.com/en/japan-topics/c12801/
#
# initialize the partial gram matrix
J = Int64[]
K = Int64[]
values = BigFloat[]
for s in 1:9
# each sphere is represented by a spacelike vector
push!(J, s)
push!(K, s)
push!(values, 1)
# the circumscribing sphere is internally tangent to all of the other spheres
if s > 1
append!(J, [1, s])
append!(K, [s, 1])
append!(values, [1, 1])
end
if s > 3
# each chain sphere is externally tangent to the "sun" and "moon" spheres
for n in 2:3
append!(J, [s, n])
append!(K, [n, s])
append!(values, [-1, -1])
end
# each chain sphere is externally tangent to the next chain sphere
s_next = 4 + mod(s-3, 6)
append!(J, [s, s_next])
append!(K, [s_next, s])
append!(values, [-1, -1])
end
end
gram = sparse(J, K, values)
# make an initial guess
guess = hcat(
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
Engine.sphere(BigFloat[0, 0, -9], BigFloat(5)),
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
(
Engine.sphere(9*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
for k in 1:6
)...
)
frozen = [CartesianIndex(4, k) for k in 1:4]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
if success
println("Chain diameters:")
println(" ", 1 / L[4,4], " sun (given)")
for k in 5:9
println(" ", 1 / L[4,k], " sun")
end
end

View File

@ -0,0 +1,49 @@
using LowRankModels
using LinearAlgebra
using SparseArrays
# testing Gram matrix recovery using the LowRankModels package
# initialize the partial gram matrix for an arrangement of seven spheres in
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
# also mutually tangent
I = Int64[]
J = Int64[]
values = Float64[]
for i in 1:7
for j in 1:7
if (i <= 5 && j <= 5) || (i >= 3 && j >= 3)
push!(I, i)
push!(J, j)
push!(values, i == j ? 1 : -1)
end
end
end
gram = sparse(I, J, values)
# in this initial guess, the mutual tangency condition is satisfied for spheres
# 1 through 5
X₀ = sqrt(0.5) * [
1 0 1 1 1;
1 0 1 -1 -1;
1 0 -1 1 -1;
1 0 -1 -1 1;
2 -sqrt(6) 0 0 0;
0.2 0.3 -0.1 -0.2 0.1;
0.1 -0.2 0.3 0.4 -0.1
]'
Y₀ = diagm([-1, 1, 1, 1, 1]) * X₀
# search parameters
search_params = ProxGradParams(
1.0;
max_iter = 100,
inner_iter = 1,
abs_tol = 1e-16,
rel_tol = 1e-9,
min_stepsize = 0.01
)
# complete gram matrix
model = GLRM(gram, QuadLoss(), ZeroReg(), ZeroReg(), 5, X = X₀, Y = Y₀)
X, Y, history = fit!(model, search_params)

View File

@ -0,0 +1,37 @@
using LinearAlgebra
using AbstractAlgebra
function printgood(msg)
printstyled("", color = :green)
println(" ", msg)
end
function printbad(msg)
printstyled("", color = :red)
println(" ", msg)
end
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
x = gens[1]
t = gens[2:4]
# three mutually tangent spheres which are all perpendicular to the x, y plane
M = matrix_space(F, 7, 7)
gram = M(F[
1 -1 -1 -1 -1 t[1] t[2];
-1 1 -1 -1 -1 x t[3]
-1 -1 1 -1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 -1 1 -1 -1;
t[1] x -1 -1 -1 1 -1;
t[2] t[3] -1 -1 -1 -1 1
])
r, p, L, U = lu(gram)
if isone(p)
printgood("Found a solution")
else
printbad("Didn't find a solution")
end
solution = transpose(L)
mform = U * inv(solution)

View File

@ -0,0 +1,90 @@
include("Engine.jl")
using SparseArrays
using AbstractAlgebra
using PolynomialRoots
using Random
# initialize the partial gram matrix for an arrangement of seven spheres in
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
# also mutually tangent
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:7
for k in 1:7
if (j <= 5 && k <= 5) || (j >= 3 && k >= 3)
push!(J, j)
push!(K, k)
push!(values, j == k ? 1 : -1)
end
end
end
gram = sparse(J, K, values)
# set the independent variable
indep_val = -9//5
gram[6, 1] = BigFloat(indep_val)
gram[1, 6] = gram[6, 1]
# in this initial guess, the mutual tangency condition is satisfied for spheres
# 1 through 5
Random.seed!(50793)
guess = let
a = sqrt(BigFloat(3)/2)
hcat(
sqrt(1/BigFloat(2)) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0.5 0.5 0.5 0.5 1+a
0.5 0.5 0.5 0.5 1-a
] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5)),
Engine.rand_on_shell(fill(BigFloat(-1), 2))
)
end
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# === algebraic check ===
#=
R, gens = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
x = gens[1]
t = gens[2:4]
S, u = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), "u")
M = matrix_space(R, 7, 7)
gram_symb = M(R[
1 -1 -1 -1 -1 t[1] t[2];
-1 1 -1 -1 -1 x t[3]
-1 -1 1 -1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 -1 1 -1 -1;
t[1] x -1 -1 -1 1 -1;
t[2] t[3] -1 -1 -1 -1 1
])
rank_constraints = det.([
gram_symb[1:6, 1:6],
gram_symb[2:7, 2:7],
gram_symb[[1, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 7]]
])
# solve for x and t
x_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[1], [2], [indep_val]))
t₂_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[3], [2], [indep_val]))
x_vals = PolynomialRoots.roots(x_constraint.coeffs)
t₂_vals = PolynomialRoots.roots(t₂_constraint.coeffs)
=#

View File

@ -0,0 +1,67 @@
include("Engine.jl")
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:6
for k in 1:6
filled = false
if j == 6
if k <= 4
push!(values, 0)
filled = true
end
elseif k == 6
if j <= 4
push!(values, 0)
filled = true
end
elseif j == k
push!(values, 1)
filled = true
elseif j <= 4 && k <= 4
push!(values, -1/BigFloat(3))
filled = true
else
push!(values, -1)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
gram = sparse(J, K, values)
# set initial guess
Random.seed!(99230)
guess = hcat(
sqrt(1/BigFloat(3)) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0 0 0 0 1.5
1 1 1 1 -0.5
] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5)),
BigFloat[0, 0, 0, 0, 1]
)
frozen = [CartesianIndex(j, 6) for j in 1:5]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")

View File

@ -0,0 +1,96 @@
include("Engine.jl")
using LinearAlgebra
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:11
for k in 1:11
filled = false
if j == 11
if k <= 4
push!(values, 0)
filled = true
end
elseif k == 11
if j <= 4
push!(values, 0)
filled = true
end
elseif j == k
push!(values, j <= 6 ? 1 : 0)
filled = true
elseif j <= 4
if k <= 4
push!(values, -1/BigFloat(3))
filled = true
elseif k == 5
push!(values, -1)
filled = true
elseif 7 <= k <= 10 && k - j != 6
push!(values, 0)
filled = true
end
elseif k <= 4
if j == 5
push!(values, -1)
filled = true
elseif 7 <= j <= 10 && j - k != 6
push!(values, 0)
filled = true
end
elseif j == 6 && 7 <= k <= 10 || k == 6 && 7 <= j <= 10
push!(values, 0)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
gram = sparse(J, K, values)
# set initial guess
Random.seed!(99230)
guess = hcat(
sqrt(1/BigFloat(3)) * BigFloat[
1 1 -1 -1 0 0
1 -1 1 -1 0 0
1 -1 -1 1 0 0
0 0 0 0 1.5 0.5
1 1 1 1 -0.5 -1.5
] + 0.0*Engine.rand_on_shell(fill(BigFloat(-1), 6)),
Engine.point([-0.5, -0.5, -0.5] + 0.3*randn(3)),
Engine.point([-0.5, 0.5, 0.5] + 0.3*randn(3)),
Engine.point([ 0.5, -0.5, 0.5] + 0.3*randn(3)),
Engine.point([ 0.5, 0.5, -0.5] + 0.3*randn(3)),
BigFloat[0, 0, 0, 0, 1]
)
frozen = vcat(
[CartesianIndex(4, k) for k in 7:10],
[CartesianIndex(j, 11) for j in 1:5]
)
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end])
if success
infty = BigFloat[0, 0, 0, 0, 1]
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio)
end

View File

@ -6,22 +6,22 @@ These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the c
| Entity or Relationship | Representation | Comments/questions |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$ -- so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
| Plane p with unit normal (x,y,z), a distance s from origin | $I_p = (2s, 0, x, y, z)$ | Note $Q(I_p, I_p)$ is still -1. Also, there are two representations for each plane through the origin, namely $(0,0,x,y,z)$ and $(0,0,-x,-y,-z)$ |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
| Plane p with unit normal (x,y,z) through the point s(x,y,z) | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still 1. |
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\||P\||,1/\||P\||,x/\||P\||,y/\||P\||,z/\||P\||)$ instead, but that fails at the origin, and likely won't have some of the other nice properties listed below.  Note that scaling just the co-radius by $s$ and the radius by $1/s$ (which still preserves $Q=0$) dilates by a factor of $s$ about the origin, so that $(\|P\|, \|P\|, x, y, z)$, which might look symmetric, would actually have to represent the Euclidean point $(x/\||P\||, y/\||P\||, z/\||P\||)$ . |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |
| Sphere/planes represented by I and J are tangent | $Q(I,J) = 1$ (??, see note at right) | Seems as though this must be $Q(I,J) = \pm1$  ? For example, the $xy$ plane represented by (0,0,0,0,1)  is tangent to the unit circle centered at (0,0,1) rep'd by (0,1,0,0,1), but their Q-product is -1. And in general you can reflect any sphere tangent to any plane through the plane and it should flip the sign of $Q(I,J)$, if I am not mistaken. |
| Sphere/planes represented by I and J are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1)$. Accordingly, their $Q$-product is 1. |
| Sphere/planes represented by I and J intersect (respectively, don't intersect) | $\|Q(I,J)\| < (\text{resp. }>)\; 1$ | Follows from the angle formula, at least conceptually. |
| P is center of sphere represented by I | Well, $Q(I_P, I)$ comes out to be $(\|P\|^2/r - r + \|P\|^2/r)/2 - \|P\|^2/r$ or just $-r/2$ . | Is it if and only if ?   No this probably doesn't work because center is not conformal quantity. |
| Distance between P and R is d | $Q(I_P, I_R) = d^2/2$ | |
| Distance between P and sphere/plane rep by I | | In the very simple case of a plane $I$ rep'd by $(2s, 0, x, y, z)$ and a point $P$ that lies on its perpendicular through the origin, rep'd by $(r^2, 1, rx, ry, rz)$ we get $Q(I, I_p) = s-r$, which is indeed the signed distance between $I$ and $P$. Not sure if this generalizes to other combinations? |
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs  + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: Q(I,J)=cosh^2 (d/2) maybe where d is distance in usual hyperbolic metric. Or maybe cosh d. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs  + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on P through R | | Probably just calculate distance etc. |
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e.$Q(I,J) = 0$. | |
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos\theta$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh t = \cos it$. |
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | Not a conformal property, but $R,P,S,\infty$ lying on a circle _is_. |
| Plane through noncollinear R, P, S | Should be, just solve Q(I, I_R) = 0 etc. | |
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e. $Q(I,J) = 0$. | |
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear R, P, S | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. The second appears to be canonical, but I don't see a circle rep that corresponds to it. |