diff --git a/engine-proto/Engine.Algebraic.jl b/engine-proto/Engine.Algebraic.jl index a9b6667..380cee1 100644 --- a/engine-proto/Engine.Algebraic.jl +++ b/engine-proto/Engine.Algebraic.jl @@ -120,11 +120,11 @@ equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - # --- constructions --- mutable struct Construction{T} - points::Vector{Point{T}} - spheres::Vector{Sphere{T}} - relations::Vector{Relation{T}} + points::Set{Point{T}} + spheres::Set{Sphere{T}} + relations::Set{Relation{T}} - function Construction{T}(; elements = Vector{Element{T}}(), relations = Vector{Relation{T}}()) where T + function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T allelements = union(elements, (rel.elements for rel in relations)...) new{T}( filter(elt -> isa(elt, Point), allelements), @@ -197,7 +197,8 @@ function realize(ctx::Construction{T}) where T push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts) end - (Generic.Ideal(coordring, eqns), eqns) + ## [test] (Generic.Ideal(coordring, eqns), eqns) + (nothing, eqns) end end \ No newline at end of file diff --git a/engine-proto/Engine.Numerical.jl b/engine-proto/Engine.Numerical.jl index d1e14bd..48fb682 100644 --- a/engine-proto/Engine.Numerical.jl +++ b/engine-proto/Engine.Numerical.jl @@ -1,6 +1,5 @@ module Numerical -using Random: default_rng using LinearAlgebra using AbstractAlgebra using HomotopyContinuation: @@ -29,16 +28,16 @@ end # --- sampling --- -function real_samples(F::AbstractSystem, dim; rng = default_rng()) +function real_samples(F::AbstractSystem, dim) # choose a random real hyperplane of codimension `dim` by intersecting # hyperplanes whose normal vectors are uniformly distributed over the unit # sphere # [to do] guard against the unlikely event that one of the normals is zero normals = transpose(hcat( - (normalize(randn(rng, nvariables(F))) for _ in 1:dim)... + (normalize(randn(nvariables(F))) for _ in 1:dim)... )) cut = LinearSubspace(normals, fill(0., dim)) - filter(isreal, results(witness_set(F, cut, seed = 0x1974abba))) + filter(isreal, results(witness_set(F, cut))) end AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) = diff --git a/engine-proto/Engine.jl b/engine-proto/Engine.jl index f6f92c5..49011c6 100644 --- a/engine-proto/Engine.jl +++ b/engine-proto/Engine.jl @@ -23,40 +23,92 @@ using GLMakie CoeffType = Rational{Int64} -spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] -tangencies = [ - Engine.AlignsWithBy{CoeffType}( - spheres[n], - spheres[mod1(n+1, length(spheres))], - CoeffType(1) - ) - for n in 1:3 -] -ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies) -ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph) -freedom = Engine.dimension(ideal_tan_sph) -println("Three mutually tangent spheres: $freedom degrees of freedom") +##a = Engine.Point{CoeffType}() +##s = Engine.Sphere{CoeffType}() +##a_on_s = Engine.LiesOn{CoeffType}(a, s) +##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) +##ideal_a_s = Engine.realize(ctx) +##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom") + +##b = Engine.Point{CoeffType}() +##b_on_s = Engine.LiesOn{CoeffType}(b, s) +##Engine.push!(ctx, b) +##Engine.push!(ctx, s) +##Engine.push!(ctx, b_on_s) +##ideal_ab_s, eqns_ab_s = Engine.realize(ctx) +##freedom = Engine.dimension(ideal_ab_s) +##println("Two points on a sphere: $freedom degrees of freedom") + +##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] +##tangencies = [ +## Engine.AlignsWithBy{CoeffType}( +## spheres[n], +## spheres[mod1(n+1, length(spheres))], +## CoeffType(-1//1) +## ) +## for n in 1:3 +##] +##tangencies = [ + ##Engine.LiesOn{CoeffType}(points[1], spheres[2]), + ##Engine.LiesOn{CoeffType}(points[1], spheres[3]), + ##Engine.LiesOn{CoeffType}(points[2], spheres[3]), + ##Engine.LiesOn{CoeffType}(points[2], spheres[1]), + ##Engine.LiesOn{CoeffType}(points[3], spheres[1]), + ##Engine.LiesOn{CoeffType}(points[3], spheres[2]) +##] +##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) +##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph) +##freedom = Engine.dimension(ideal_tan_sph) +##println("Three mutually tangent spheres: $freedom degrees of freedom") + +points = [Engine.Point{CoeffType}() for _ in 1:3] +spheres = [Engine.Sphere{CoeffType}() for _ in 1:2] +ctx_joined = Engine.Construction{CoeffType}( + elements = Set([points; spheres]), + relations= Set([ + Engine.LiesOn{CoeffType}(pt, sph) + for pt in points for sph in spheres + ]) +) +ideal_joined, eqns_joined = Engine.realize(ctx_joined) +freedom = Engine.dimension(ideal_joined) +println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom") # --- test rational cut --- -coordring = base_ring(ideal_tan_sph) +coordring = base_ring(ideal_joined) vbls = Variable.(symbols(coordring)) # test a random witness set -system = CompiledSystem(System(eqns_tan_sph, variables = vbls)) +system = CompiledSystem(System(eqns_joined, variables = vbls)) norm2 = vec -> real(dot(conj.(vec), vec)) -rng = MersenneTwister(6071) -n_planes = 6 +Random.seed!(6071) +n_planes = 3 samples = [] for _ in 1:n_planes - real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng)) + real_solns = solution.(Engine.Numerical.real_samples(system, freedom)) for soln in real_solns if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) push!(samples, soln) end end end -println("Found $(length(samples)) sample solutions") +println("$(length(samples)) sample solutions:") +for soln in samples + ## display([vbls round.(soln, digits = 6)]) ## [verbose] + k_sq = abs2(soln[1]) + if abs2(soln[end-2]) > 1e-12 + if k_sq < 1e-12 + println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))") + else + sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq + println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))") + end + else + sum_sq = sum(soln[[4, 7, 10]] .^ 2) + println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") + end +end # show a sample solution function show_solution(ctx, vals)