diff --git a/lang-trials/scala-benchmark/index.html b/lang-trials/scala-benchmark/index.html index 8e1429a..f9eb11c 100644 --- a/lang-trials/scala-benchmark/index.html +++ b/lang-trials/scala-benchmark/index.html @@ -3,7 +3,7 @@ The circular law - + diff --git a/lang-trials/scala-benchmark/src/main/scala/CircularLawApp.scala b/lang-trials/scala-benchmark/src/main/scala/CircularLawApp.scala index 12a0a00..950e661 100644 --- a/lang-trials/scala-benchmark/src/main/scala/CircularLawApp.scala +++ b/lang-trials/scala-benchmark/src/main/scala/CircularLawApp.scala @@ -2,7 +2,6 @@ import com.raquo.laminar.api.L.{*, given} import narr.* import org.scalajs.dom import org.scalajs.dom.document -import scala.collection.mutable.ArrayBuffer import scala.math.{cos, sin} import slash.matrix.Matrix import slash.matrix.decomposition.Eigen @@ -39,45 +38,36 @@ object CircularLawApp: ) ctx.fill() - def complexEigenvalues[N <: Int](mat: Matrix[N, N])(using ValueOf[N]): (NArray[Double], NArray[Double]) = - val eigen = Eigen(mat) + def eigvalsRotated[N <: Int](A: Matrix[N, N], time: Double)(using ValueOf[N]): (NArray[Double], NArray[Double]) = + // create transformation + val maxFreq = 4 + val T = Matrix.identity[N, N] + val dim: Int = valueOf[N] + for n <- 0 to dim by 2 do + val a = cos(math.Pi * time * (n % maxFreq)) + val b = sin(math.Pi * time * (n % maxFreq)) + T(n, n) = a + T(n+1, n) = b + T(n, n+1) = -b + T(n+1, n+1) = a + + // find eigenvalues + val eigen = Eigen(T*A) ( eigen.realEigenvalues.asInstanceOf[NArray[Double]], eigen.imaginaryEigenvalues.asInstanceOf[NArray[Double]] ) - def randEigvalSeries[N <: Int]()(using ValueOf[N]): (ArrayBuffer[(NArray[Double], NArray[Double])], String) = - // start timing - val startTime = System.currentTimeMillis() - - // initialize the random matrix step + def randEigvalSeries[N <: Int]()(using ValueOf[N]): (List[(NArray[Double], NArray[Double])], String) = + val timeRes = 100 val dim: Int = valueOf[N] - var randMat = new Matrix[N, N]( + val startTime = System.currentTimeMillis() + val A = new Matrix[N, N]( NArray.tabulate(dim*dim)(k => (math.E*k*k) % 2 - 1) ).times(math.sqrt(3d / dim)) - - // initialize the rotation step - val timeRes = 100 - val maxFreq = 4 - val rotStep = Matrix.identity[N, N] - for n <- 0 to dim by 2 do - val ang = math.Pi * (n % maxFreq) / timeRes - val cos_ang = cos(ang) - val sin_ang = sin(ang) - rotStep(n, n) = cos_ang - rotStep(n+1, n) = sin_ang - rotStep(n, n+1) = -sin_ang - rotStep(n+1, n+1) = cos_ang - - // find the eigenvalues - val eigvalSeries = ArrayBuffer(complexEigenvalues(randMat)) - for _ <- 1 to timeRes-1 do - randMat = rotStep * randMat - eigvalSeries += complexEigenvalues(randMat) - - // finish timing + val series = List.tabulate(timeRes)(t => eigvalsRotated(A, t.toDouble / timeRes)) val runTime = System.currentTimeMillis() - startTime - (eigvalSeries, runTime.toString() + " ms") + (series, runTime.toString() + " ms") def main(args: Array[String]): Unit = ctx.fillStyle = "white"