diff --git a/engine-proto/Engine.jl b/engine-proto/Engine.jl index ac9ed35..b5eee96 100644 --- a/engine-proto/Engine.jl +++ b/engine-proto/Engine.jl @@ -2,12 +2,13 @@ include("HittingSet.jl") module Engine -export Construction, mprod +export Construction, mprod, codimension, dimension import Subscripts using LinearAlgebra using AbstractAlgebra using Groebner +using HomotopyContinuation: Variable, Expression, System using ..HittingSet # --- commutative algebra --- @@ -27,6 +28,34 @@ end dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} = length(gens(base_ring(I))) - codimension(I, maxdepth) +# hat tip Sascha Timme +# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521 +function Base.convert(::Type{Expression}, f::MPolyRingElem) + variables = Variable.(symbols(parent(f))) + f_data = zip(coefficients(f), exponent_vectors(f)) + sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data) +end + +# create a ModelKit.System from an ideal in a multivariate polynomial ring. the +# variable ordering is taken from the polynomial ring +function System(I::Generic.Ideal) + eqns = Expression.(gens(I)) + variables = Variable.(symbols(base_ring(I))) + System(eqns, variables = variables) +end + +## [to do] not needed right now +# create a ModelKit.System from a list of elements of a multivariate polynomial +# ring. the variable ordering is taken from the polynomial ring +##function System(eqns::AbstractVector{MPolyRingElem}) +## if isempty(eqns) +## return System([]) +## else +## variables = Variable.(symbols(parent(f))) +## return System(Expression.(eqns), variables = variables) +## end +##end + # --- primitve elements --- abstract type Element{T} end @@ -189,39 +218,75 @@ function realize(ctx::Construction{T}) where T append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4]) end - Generic.Ideal(coordring, eqns) + (Generic.Ideal(coordring, eqns), eqns) end end # ~~~ sandbox setup ~~~ +using AbstractAlgebra +using HomotopyContinuation + CoeffType = Rational{Int64} a = Engine.Point{CoeffType}() s = Engine.Sphere{CoeffType}() a_on_s = Engine.LiesOn{CoeffType}(a, s) ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) -ideal_a_s = Engine.realize(ctx) -println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freeom") +##ideal_a_s = Engine.realize(ctx) +##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom") b = Engine.Point{CoeffType}() b_on_s = Engine.LiesOn{CoeffType}(b, s) Engine.push!(ctx, b) Engine.push!(ctx, s) Engine.push!(ctx, b_on_s) -ideal_ab_s = Engine.realize(ctx) -println("Two points on a sphere: ", Engine.dimension(ideal_ab_s), " degrees of freeom") +ideal_ab_s, eqns_ab_s = Engine.realize(ctx) +println("Two points on a sphere: ", Engine.dimension(ideal_ab_s), " degrees of freedom") -spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] -tangencies = [ - Engine.AlignsWithBy{CoeffType}( - spheres[n], - spheres[mod1(n+1, length(spheres))], - CoeffType(-1//1) - ) - for n in 1:3 +##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] +##tangencies = [ +## Engine.AlignsWithBy{CoeffType}( +## spheres[n], +## spheres[mod1(n+1, length(spheres))], +## CoeffType(-1//1) +## ) +## for n in 1:3 +##] +##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) +##ideal_tan_sph = Engine.realize(ctx_tan_sph) +##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom") + +# --- test rational cut --- + +cut = [ + sum(vcat(a.coords, (s.coords - [0, 0, 0, 0, 1]))) + sum(vcat([2, 1, 1] .* a.coords, [1, 2, 1, 1, 1] .* s.coords - [0, 0, 0, 0, 1])) + sum(vcat([1, 2, 0] .* a.coords, [1, 1, 0, 1, 2] .* s.coords - [0, 0, 0, 0, 1])) ] -ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) -ideal_tan_sph = Engine.realize(ctx_tan_sph) -println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freeom") \ No newline at end of file +cut_ideal_ab_s = Generic.Ideal(base_ring(ideal_ab_s), [gens(ideal_ab_s); cut]) +cut_dim = Engine.dimension(cut_ideal_ab_s) +println("Two points on a sphere, after cut: ", cut_dim, " degrees of freedom") +if cut_dim == 0 + vbls = Variable.(symbols(base_ring(ideal_ab_s))) + cut_system = System([eqns_ab_s; cut], variables = vbls) + cut_result = HomotopyContinuation.solve(cut_system) + println("non-singular solutions:") + for soln in solutions(cut_result) + display(soln) + end + println("singular solutions:") + for sing in singular(cut_result) + display(sing.solution) + end + + # test corresponding witness set + cut_matrix = [1 1 1 1 0 1 1 0 1 1 0; 1 2 1 2 0 1 1 0 1 1 0; 1 1 0 1 0 1 2 0 2 0 0] + cut_subspace = LinearSubspace(cut_matrix, [1, 1, 1]) + witness = witness_set(System(eqns_ab_s, variables = vbls), cut_subspace) + println("witness solutions:") + for wtns in solutions(witness) + display(wtns) + end +end \ No newline at end of file