From 21cefa9f8a2f297b6cf36fbc31ae5249cca3a88f Mon Sep 17 00:00:00 2001 From: Aaron Fenyes Date: Tue, 21 Jan 2025 18:52:01 -0800 Subject: [PATCH] Do `symmetric_kernel` in projection coordinates Instead of finding the kernel in the standard coordinates and then expressing it in the projection coordinates, work in the projection coordinates from the beginning by applying a change of basis to the input matrix. --- app-proto/examples/kaleidocycle.rs | 2 +- app-proto/src/display.rs | 2 +- app-proto/src/engine.rs | 46 +++++++++++++++--------------- 3 files changed, 25 insertions(+), 25 deletions(-) diff --git a/app-proto/examples/kaleidocycle.rs b/app-proto/examples/kaleidocycle.rs index 3448b87..88116d3 100644 --- a/app-proto/examples/kaleidocycle.rs +++ b/app-proto/examples/kaleidocycle.rs @@ -59,7 +59,7 @@ fn main() { println!("Loss: {}\n", history.scaled_loss.last().unwrap()); // find the kaleidocycle's twist motion - let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0, 0.0]); + let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]); let down = -&up; let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map( |n| [ diff --git a/app-proto/src/display.rs b/app-proto/src/display.rs index bbfe059..4e0c7e4 100644 --- a/app-proto/src/display.rs +++ b/app-proto/src/display.rs @@ -346,7 +346,7 @@ pub fn Display() -> View { Vector3::zeros() }; time_step * DVector::from_column_slice( - &[u[0], u[1], u[2], SHRINKING_SPEED * shrink, 0.0] + &[u[0], u[1], u[2], SHRINKING_SPEED * shrink] ) }; assembly_for_raf.deform( diff --git a/app-proto/src/engine.rs b/app-proto/src/engine.rs index 9db6db0..0f1fd36 100644 --- a/app-proto/src/engine.rs +++ b/app-proto/src/engine.rs @@ -107,13 +107,14 @@ impl ConfigSubspace { // space for `assembly_dim` elements. we consider an eigenvector to be part // of the kernel if its eigenvalue is smaller than the constant `THRESHOLD` fn symmetric_kernel(a: DMatrix, proj_to_std: DMatrix, assembly_dim: usize) -> ConfigSubspace { - // find a basis for the kernel, expressed in the standard coordinates - const ELEMENT_DIM: usize = 5; - const THRESHOLD: f64 = 1.0e-4; - let eig = SymmetricEigen::new(a); + // find a basis for the kernel. the basis is expressed in the projection + // coordinates, and it's orthonormal with respect to the projection + // inner product + const THRESHOLD: f64 = 0.1; + let eig = SymmetricEigen::new(proj_to_std.tr_mul(&a) * &proj_to_std); let eig_vecs = eig.eigenvectors.column_iter(); let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs); - let basis_std = DMatrix::from_columns( + let basis_proj = DMatrix::from_columns( eig_pairs.filter_map( |(λ, v)| (λ.abs() < THRESHOLD).then_some(v) ).collect::>().as_slice() @@ -126,29 +127,27 @@ impl ConfigSubspace { format!("Eigenvalues used to find kernel:{}", eig.eigenvalues) )); - // express the basis in the projection coordinates - let basis_proj = proj_to_std.clone().qr().solve(&basis_std).unwrap(); - - // orthonormalize the basis with respect to the projection inner product - let basis_proj_orth = basis_proj.qr().q(); - let basis_std_orth = proj_to_std * &basis_proj_orth; + // express the basis in the standard coordinates + let basis_std = proj_to_std * &basis_proj; // print the projection basis in projection coordinates #[cfg(all(target_family = "wasm", target_os = "unknown"))] console::log_1(&JsValue::from( - format!("Basis in projection coordinates:{}", basis_proj_orth) + format!("Basis in projection coordinates:{}", basis_proj) )); + const ELEMENT_DIM: usize = 5; + const UNIFORM_DIM: usize = 4; ConfigSubspace { assembly_dim: assembly_dim, - basis_std: basis_std_orth.column_iter().map( + basis_std: basis_std.column_iter().map( |v| Into::>::into( v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim)) ) ).collect(), - basis_proj: basis_proj_orth.column_iter().map( + basis_proj: basis_proj.column_iter().map( |v| Into::>::into( - v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim)) + v.reshape_generic(Dyn(UNIFORM_DIM), Dyn(assembly_dim)) ) ).collect() } @@ -247,26 +246,25 @@ fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix) -> DMatrix { const ELEMENT_DIM: usize = 5; + const UNIFORM_DIM: usize = 4; let curv = 2.0*v[3]; if v.dot(&(&*Q * v)) < 0.5 { // `v` represents a point. the normalization condition says that the // curvature component of `v` is 1/2 - DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[ + DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[ curv, 0.0, 0.0, 0.0, v[0], 0.0, curv, 0.0, 0.0, v[1], 0.0, 0.0, curv, 0.0, v[2], - v[0], v[1], v[2], v[3], v[4], 0.0, 0.0, 0.0, 0.0, 1.0 ]) } else { // `v` represents a sphere. the normalization condition says that the // Lorentz product of `v` with itself is 1 - DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[ + DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[ curv, 0.0, 0.0, 0.0, v[0], 0.0, curv, 0.0, 0.0, v[1], 0.0, 0.0, curv, 0.0, v[2], - curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0, - v[0], v[1], v[2], v[3], v[4] + curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0 ]) } } @@ -401,11 +399,13 @@ pub fn realize_gram( let success = state.loss < tol; let tangent = if success { // express the uniform basis in the standard basis - let mut unif_to_std = DMatrix::::zeros(total_dim, total_dim); + const UNIFORM_DIM: usize = 4; + let total_dim_unif = UNIFORM_DIM * assembly_dim; + let mut unif_to_std = DMatrix::::zeros(total_dim, total_dim_unif); for n in 0..assembly_dim { - let block_start = element_dim * n; + let block_start = (element_dim * n, UNIFORM_DIM * n); unif_to_std - .view_mut((block_start, block_start), (element_dim, element_dim)) + .view_mut(block_start, (element_dim, UNIFORM_DIM)) .copy_from(&local_unif_to_std(state.config.column(n))); }