dyna3/engine-proto/gram-test/low-rank-test.jl

50 lines
1.1 KiB
Julia
Raw Permalink Normal View History

using LowRankModels
using LinearAlgebra
using SparseArrays
# testing Gram matrix recovery using the LowRankModels package
# initialize the partial gram matrix for an arrangement of seven spheres in
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
# also mutually tangent
I = Int64[]
J = Int64[]
values = Float64[]
for i in 1:7
for j in 1:7
if (i <= 5 && j <= 5) || (i >= 3 && j >= 3)
push!(I, i)
push!(J, j)
push!(values, i == j ? 1 : -1)
end
end
end
gram = sparse(I, J, values)
# in this initial guess, the mutual tangency condition is satisfied for spheres
# 1 through 5
X₀ = sqrt(0.5) * [
1 0 1 1 1;
1 0 1 -1 -1;
1 0 -1 1 -1;
1 0 -1 -1 1;
2 -sqrt(6) 0 0 0;
0.2 0.3 -0.1 -0.2 0.1;
0.1 -0.2 0.3 0.4 -0.1
]'
Y₀ = diagm([-1, 1, 1, 1, 1]) * X₀
# search parameters
search_params = ProxGradParams(
1.0;
max_iter = 100,
inner_iter = 1,
abs_tol = 1e-16,
rel_tol = 1e-9,
min_stepsize = 0.01
)
# complete gram matrix
model = GLRM(gram, QuadLoss(), ZeroReg(), ZeroReg(), 5, X = X₀, Y = Y₀)
X, Y, history = fit!(model, search_params)