<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4> Construction by <a href="http://cdsmith.wordpress.com/2009/04/20/old-memories-about-trisecting-angles/">cdsmith</a> </h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="600" height="450"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <param name="e[1]" value="O;point;fixed;250,340"> <param name="e[2]" value="A;point;fixed;450,340"> <param name="e[3]" value="cir1;circle;radius;O,A;none;none;none;none"> <param name="e[4]" value="B;point;circleSlider;cir1,400,0;red;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <param name="e[7]" value="AB;line;connect;A,B;none;none;lightGray"> <param name="e[8]" value="M;point;midpoint;A,B"> <param name="e[9]" value="cA;circle;radius;A,M;none;none;green;none"> <param name="e[10]" value="cM;circle;radius;M,A;none;none;green;none"> <param name="e[11]" value="cB;circle;radius;B,M;none;none;green;none"> <param name="e[12]" value="li1;line;bichord;cA,cM;none;none;none"> <param name="e[13]" value="C;point;first;li1"> <param name="e[14]" value="li2;line;bichord;cM,cB;none;none;none"> <param name="e[15]" value="D;point;first;li2"> <param name="e[16]" value="OC;line;connect;O,C;none;none;red"> <param name="e[17]" value="OD;line;connect;O,D;none;none;red"> <!-- angle marker --> <param name="e[18]" value="p1;point;fixed;285,340;none;none"> <param name="e[19]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[20]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[21]" value="q1;point;first;l1;none;none"> <param name="e[22]" value="l2;line;chord;O,C,c1;none;none;none"> <param name="e[23]" value="q2;point;first;l2;none;none"> <param name="e[24]" value="s1;sector;sector;O,q1,q2;none;none;black;orange"> <param name="e[25]" value="l3;line;chord;OB,c1;none;none;none"> <param name="e[26]" value="q3;point;first;l3;none;none"> <param name="e[27]" value="s2;sector;sector;O,q2,q3;none;none;black;yellow"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$.<br> Press “r” to reset the diagram to its initial state.<br> The red lines $OC$ and $OD$ are approximate trisectors of the angle $AOB$. </b> </td></tr></table> <h2>Construction</h2> <p> To trisect the angle $AOB$ (with $OA=OB$), do: <ol> <li> Find the midpoint $M$ of the line segment $AB$. <li> Draw circles centered at $A$, $M$, and $B$, each of radius $\frac{1}{2}AB$, and mark their intersection points $C$ and $D$, as shown in the diagram above. </ol> The lines $OC$ and $OD$ are approximate trisectors of the angle $AOB$. <h2>Error Analysis</h2> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $AOC$, respectively. One may verify that \[ \beta = \arctan\bigg( \frac{ \sin\frac{\alpha}{2} \sin\big(\frac{\pi}{6}+\frac{\alpha}{2}\big) }{ 1 + \sin\frac{\alpha}{2} \cos\big(\frac{\pi}{6}+\frac{\alpha}{2}\big) } \bigg) = \frac{1}{4}\alpha + \frac{\sqrt{3}}{16} \alpha^2 - \frac{1}{16} \alpha^3 + O(\alpha^4). \] <p> This says that $\ds \beta \approx \frac{1}{4}\alpha$ when $\alpha$ is small, so small angles are quadrisected, rather than trisected! (This is clearly visible in the interactive diagram above.) For not-so-small angles, the method works reasonably well. In fact, it produces <em>exact trisection</em> for angles $\alpha=\pi/2$ and $\alpha=\pi$. <p> The worst error in the range $0 \le \alpha \le \pi$ is 0.0214 radians = 1.23 degrees. This occurs at $\alpha=2\arctan(\sqrt{3}\pm\sqrt{2})$ which corresponds to angles of approximately 35 degrees and 145 degrees. <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on June 14, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>