<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4>Construction by <a href="mailto:mhs210@hotmail.com">Mark Stark</a> </h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="600" height="600"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <!-- The angle AOB --> <param name="e[1]" value="O;point;fixed;300,300"> <param name="e[2]" value="A;point;fixed;585,300"> <param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none"> <param name="e[4]" value="B;point;circleSlider;C1,70,0;red;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <!-- The inner circle --> <param name="e[7]" value="A';point;fixed;395,300"> <param name="e[8]" value="C2;circle;radius;O,A';none;none;lightGray;none"> <param name="e[9]" value="L1;line;chord;OB,C2;none;none;none"> <param name="e[10]" value="B';point;first;L1"> <param name="e[11]" value="A'B';line;connect;A',B';none;none;green"> <!-- Points E and D --> <param name="e[12]" value="E;point;circleSlider;C2,600,150;red;red"> <param name="e[13]" value="C3;circle;radius;A',E;none;none;lightGray;none"> <param name="e[14]" value="L2;line;chord;A'B',C3;none;none;none"> <param name="e[15]" value="D;point;first;L2"> <param name="e[16]" value="L3;line;chord;D,E,C1;none;none;none"> <param name="e[17]" value="G;point;last;L3"> <param name="e[18]" value="EG;line;connect;E,G;none;none;lightGray"> <param name="e[19]" value="L4;line;chord;G,O,C1;none;none;none"> <param name="e[20]" value="T;point;last;L4"> <param name="e[21]" value="GT;line;connect;G,T;none;none;red"> <param name="e[22]" value="p1;point;fixed;325,300;none;none"> <param name="e[23]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[24]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[25]" value="q1;point;first;l1;none;none"> <param name="e[26]" value="l2;line;chord;O,T,c1;none;none;none"> <param name="e[27]" value="q2;point;first;l2;none;none"> <param name="e[28]" value="s1;sector;sector;O,q1,q2;none;none;black;orange"> <param name="e[29]" value="p2;point;fixed;325,300;none;none"> <param name="e[30]" value="c2;circle;radius;O,p2;none;none;none;none"> <param name="e[31]" value="l3;line;chord;O,T,c2;none;none;none"> <param name="e[32]" value="q3;point;first;l3;none;none"> <param name="e[33]" value="l4;line;chord;OB,c2;none;none;none"> <param name="e[34]" value="q4;point;first;l4;none;none"> <param name="e[35]" value="s2;sector;sector;O,q3,q4;none;none;black;yellow"> <param name="pivot" value="O"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$ (but stay on the upper half of the semicircle).<br> Drag the point “$E$” to change the radius of the circle centered at $A'$. Note how little $G$ is affected by the choice of $E$.<br> Press “r” to reset the diagram to its initial state.<br> The red line ($O$T) is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <h2>Construction</h2> <p> This construction, due to Mark Stark, was announced <a href="http://mathforum.org/kb/message.jspa?messageID=1088614"> in an message</a> in the <code>geometry.puzzles</code> newsgroup on Jun 20, 2002. Scroll to the bottom of that page to view the related discussion thread. <p> The construction is unusual because one of the steps involves an arbitrary choice. It is interesting that the result is quite insensitive to that choice. <p> Here I have paraphrased Mark's construction but differences from the original are cosmetic. The error analysis is mine. <p> Consider the circular arc $AB$ on the circle $C$ centered at $O$, shown in the diagram above. Assume the angle $AOB$ is between 0 and 180 degrees. To trisect $AOB$, do: <ol> <li> Draw a circle $C'$ centered at $O$ with a radius 1/3 $OA$. Mark $A'$ and $B'$ its intersections with the line segments $OA$ and $OB$, respectively. <li> Draw the line $A'B'$ (shown in green). <li> Draw a circle $C''$ centered at $A'$ with an arbitrary(!) radius. The accuracy of the trisection will be affected by the choice of the radius, albeit only slightly. Best results are obtained when the angle $EA'D$ (see the next step) is close to one third of the angle $AOB$. <li> Let $D$ be the intersection of $C''$ with the line segment $A'B'$.<br> Let $E$ be the intersection of $C''$ with the $C'$, as shown. <li> Draw the line $ED$ and extend to the intersection point $G$ with the the circle $C$. <li> Draw the diameter $GOT$. </ol> The line $OT$ is an approximate trisector of the angle $AOB$. <h2>Error Analysis</h2> <p> In the diagram below, I have duplicated the previous diagram and added the lines $OE$ and $EA'$ which are not needed in the construction, but are needed for the error analysis. <p> You may zoom and translate the diagram to examine its details. To zoom in, grab the point $B'$ with the mouse and move it away from $O$. To translate, grab $O$ and move it around. As always, type “r” to reset the diagram to its initial state. <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="600" height="600"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <!-- The angle AOB --> <param name="e[1]" value="O;point;fixed;300,300"> <param name="e[2]" value="A;point;fixed;585,300"> <param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none"> <param name="e[4]" value="B;point;circleSlider;C1,70,0;red;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <!-- The inner circle --> <param name="e[7]" value="A';point;fixed;395,300"> <param name="e[8]" value="C2;circle;radius;O,A';none;none;lightGray;none"> <param name="e[9]" value="L1;line;chord;OB,C2;none;none;none"> <param name="e[10]" value="B';point;first;L1"> <param name="e[11]" value="A'B';line;connect;A',B';none;none;green"> <!-- Points E and D --> <param name="e[12]" value="E;point;circleSlider;C2,600,150;red;red"> <param name="e[13]" value="C3;circle;radius;A',E;none;none;lightGray;none"> <param name="e[14]" value="L2;line;chord;A'B',C3;none;none;none"> <param name="e[15]" value="D;point;first;L2"> <param name="e[16]" value="L3;line;chord;D,E,C1;none;none;none"> <param name="e[17]" value="G;point;last;L3"> <param name="e[18]" value="EG;line;connect;E,G;none;none;lightGray"> <param name="e[19]" value="L4;line;chord;G,O,C1;none;none;none"> <param name="e[20]" value="T;point;last;L4"> <param name="e[21]" value="GT;line;connect;G,T;none;none;red"> <param name="e[22]" value="p1;point;fixed;325,300;none;none"> <param name="e[23]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[24]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[25]" value="q1;point;first;l1;none;none"> <param name="e[26]" value="l2;line;chord;O,T,c1;none;none;none"> <param name="e[27]" value="q2;point;first;l2;none;none"> <param name="e[28]" value="s1;sector;sector;O,q1,q2;none;none;black;orange"> <param name="e[29]" value="p2;point;fixed;325,300;none;none"> <param name="e[30]" value="c2;circle;radius;O,p2;none;none;none;none"> <param name="e[31]" value="l3;line;chord;O,T,c2;none;none;none"> <param name="e[32]" value="q3;point;first;l3;none;none"> <param name="e[33]" value="l4;line;chord;OB,c2;none;none;none"> <param name="e[34]" value="q4;point;first;l4;none;none"> <param name="e[35]" value="s2;sector;sector;O,q3,q4;none;none;black;yellow"> <param name="e[36]" value="EA;;line;connect;E,A';none;none;lightGray"> <param name="e[37]" value="OE;;line;connect;O,E;none;none;lightGray"> <param name="pivot" value="O"> </applet> </td></tr> <tr><td> <b> To zoom in, grab the point $B'$ with the mouse and move it away from $O$.<br> To translate, grab $O$ and move it around.<br> Type “r” to return to the initial state. </b> </td></tr></table> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $AOT$, respectively. We will show that $\beta \approx \frac{1}{3}\alpha$. <p> The construction leaves the size of the circle $C''$ (centered at $A'$) unspecified. We parametrize the circle by the position of the point $E$ along the arc $A'B'$, or more precisely, by the value $\gamma$ of the angle angle $B'A'E$. Thus $\gamma=0$ when $E$ coincides with $B'$ and $\gamma=\alpha/2$ (easy to verify) when E coincides with $A'$. <p> Since the angles $B'A'E$ and $B'OE$ subtend the arc $B'E$ of the circle $C'$, then the angle $B'OE$ is $2\gamma$. Therefore the angle $EOA'$ is $\alpha - 2\gamma$. But $EOA'$ is the vertex angle of the triangle $EOA'$, therefore the base angle $OEA'$ is $\frac{1}{2}(\pi - \alpha + 2\gamma)$. <p> In the isosceles triangle $DA'E$, the vertex angle is $\gamma$, therefore the base angle $DEA'$ is $\frac{1}{2}(\pi - \gamma)$. <p> Putting the assertions of the two previous paragraphs together, we calculate the angle $OED$: \[ OED = OEA' - DEA' = \frac{1}{2}(3\gamma - \alpha) \] <p> In the triangle $GOE$, we have just computed the angle at $E$ (because $OED$ is the same as $OEG$). Let us write $x$ for the angle at $G$. Then $x$ may be computed by applying the law of sines and noting that the ratio of the sides $OG$ to $OE$ is 3. We get: $3\sin x = \sin\frac{1}{2}(3\gamma-\alpha)$. <p> The external angle $EOT$ of the triangle $GOE$ equals the sum of the remaining internal angles, that is: \[ EOT = x + \frac{1}{2}(3\gamma-\alpha). \] On the other hand, \[ EOT = EOB' - TOB' = EOB' - (A'OB' - A'OT) = 2\gamma - (\alpha - \beta). \] We see then $x + \frac{1}{2}(3\gamma-\alpha) = 2\gamma - (\alpha - \beta)$, whence $x = \beta + \gamma/2 - \beta/2$. This leads to the equation: \[ 3\sin\big(\beta + \frac{1}{2}\gamma - \frac{1}{2}\beta\big) = \sin\frac{1}{2}(3\gamma-\alpha), \] which we may solve for $\beta$: \[ \beta = \frac{1}{3}\alpha + \frac{1}{6}(\alpha-3\gamma) - \arcsin\bigg[ \frac{1}{3}\sin\Big(\frac{\alpha-3\gamma}{2} \Big) \bigg] \] <p> As expected, the constructed angle, $\beta$, depends on the original angle $\alpha$ we well as the choice of $\gamma$. Let us express this dependence as $\beta = \tau(\alpha,\gamma)$. Expanding $\tau$ in power series we get: \[ \beta = \tau(\alpha,\gamma) = \frac{1}{3}\alpha + \frac{4}{3}\Big(\frac{\alpha-3\gamma}{6} \Big)^3 - \frac{4}{5}\Big(\frac{\alpha-3\gamma}{6} \Big)^7 + O\bigg( \Big(\frac{\alpha-3\gamma}{6}\Big)^9 \bigg). \] The term with exponent 5 is absent in the series expansion; that's not a typo. <h3>On the choice of $\gamma$</h3> <p> We see that $\tau(\alpha,\alpha/3) = \alpha/3$, that is, the construction produces an <em>exact trisection</em> with the choice $\gamma=\alpha/3$. Of course, constructing such a $\gamma$ is equivalent to solving the original trisection problem, therefore that is not an option. On the other hand, a constructible $\gamma$ that comes close to $\alpha/3$ will serve just fine. The function $\tau$ is not very sensitive to the variations of $\gamma$ as is evident from: \[ \frac{\partial \tau(\alpha,\gamma)}{\partial \gamma} = \frac{1}{2} \bigg( \frac{3\cos 3x}{\sqrt{9 - \sin^2 3x}} -1 \bigg), \] where I have let $x=(\alpha-3\gamma)/6$ to simplify the notation. As noted above, best results are achieved when $\gamma$ is close to $\alpha/3$. Even with a not-so-optimal choice of $\gamma=\alpha/4$ we get $x=\alpha/24$. With such a choice, the value of partial derivative in the range $0 \le \alpha \le \pi/2$ does not exceed 0.01, indicating that the value of the function is essentially independent of $\gamma$ on that range. <p> <b>An excellent choice</b> for $\gamma$ is obtained as follows. In Step 3 of the construction, first select the point $D$ on the line segment $A'B'$ such that $A'D = \frac{1}{3} A'B'$. Then draw the circle $C''$ with center $A'$ passing through $D$. One may verify that this results in an angle $\gamma$ given by: \[ \hat{\gamma} = \frac{1}{2} \alpha - \arcsin\Big( \frac{1}{3} \sin\frac{\alpha}{2} \Big) = \frac{1}{3} \alpha + \frac{1}{2\cdot3^4} \alpha^3 + O(\alpha^7). \] Then, the constructed angle is: \[ \beta = \tau(\alpha,\hat{\gamma}) = \tau\bigg(\alpha, \frac{1}{2} \alpha - \arcsin\Big( \frac{1}{3} \sin\frac{\alpha}{2} \Big) \bigg) = \frac{1}{3} \alpha - \frac{1}{2^4\cdot3^{13}} \alpha^9 + O(\alpha^{13}). \] The construction error, $e(\alpha) = \frac{1}{3}\alpha-\beta$, is monotone increasing. Since $e(\alpha) = O(\alpha^9)$, we expect it to be very small. Indeed, the worst error on the interval $0 \le \alpha \le \pi/2$ is the incredibly small $e(\pi/2)$ = 0.00000226 radians = 0.00013 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.00103 radians = 0.0592 degrees. <p> Despite its extraordinary accuracy, this is <em>not</em> among my favorite trisection methods because the points $D$ and $E$ are too close to each other for locating the point $G$ reliably. For practical purposes, should there be such a need, I would much rather use a more robust, albeit less accurate, method. <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on July 26, 2002. <br>The error analysis was thoroughly revised and extensive cosmetic changes were made on June 7, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>