<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4> William R. Raiford, <i>An approximate trisection</i>, American Mathematical Monthly, vol. 68, no. 9, Nov 1961, p. 917. </h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="450" height="400"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <param name="e[1]" value="O;point;fixed;210,365"> <param name="e[2]" value="A;point;fixed;410,365"> <param name="e[3]" value="pt0;point;fixed;410,0;none;none"> <param name="e[4]" value="li0;line;connect;A,pt0;none;none;green"> <param name="e[5]" value="cir1;circle;radius;O,A;none;none;none;none"> <param name="e[6]" value="B;point;circleSlider;cir1,0,300;red;red"> <param name="e[7]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[8]" value="OB;line;connect;O,B;none;none;blue"> <param name="e[9]" value="arcAB;sector;sector;O,A,B;none;none;blue;none"> <param name="e[10]" value="pt1;point;angleBisector;A,O,B;none;none"> <param name="e[11]" value="C;point;cutoff;O,pt1,O,A"> <param name="e[12]" value="OC;line;connect;O,C;none;none;lightGray"> <param name="e[13]" value="li1;line;connect;B,C;none;none;lightGray"> <param name="e[14]" value="li2;line;extend;B,C,B,C;none;none;lightGray"> <param name="e[15]" value="T;point;intersection;li0,li2"> <param name="e[16]" value="OT;line;connect;O,T;none;none;red"> <!-- angle marker --> <param name="e[17]" value="p1;point;fixed;240,385;none;none"> <param name="e[18]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[19]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[20]" value="q1;point;first;l1;none;none"> <param name="e[21]" value="l2;line;chord;O,T,c1;none;none;none"> <param name="e[22]" value="q2;point;first;l2;none;none"> <param name="e[23]" value="s1;sector;sector;O,q1,q2;none;none;black;orange"> <!-- angle marker --> <param name="e[24]" value="l3;line;chord;OB,c1;none;none;none"> <param name="e[25]" value="q3;point;first;l3;none;none"> <param name="e[26]" value="s2;sector;sector;O,q2,q3;none;none;black;yellow"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$.<br> Press “r” to reset the diagram to its initial state.<br> The red line $OT$ is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <h2>Construction</h2> <p> The construction described in the article cited at the top of the page, is quite straightforward. Consider the angle $AOB$ represented by the circular arc $AB$ centered at $O$, as shown in the diagram above. To trisect $AOB$ do: <ol> <li> Erect a perpendicular to $OA$ at $A$ (shown in green). <li> Construct the bisector $OC$ of the angle $AOB$. <li> Connect $B$ to $C$ and extend to intersect the green line at a point $T$. </ol> The line $OT$ is an approximate trisector of the angle $AOB$. <h2>Error Analysis</h2> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $AOT$, respectively. One may verify that \[ \beta = \arctan \Big( \sin\alpha - (1 - \cos\alpha) \cot \big( \frac{3}{4}\alpha \big) \Big) = \frac{1}{3}\alpha + \frac{1}{2^3\cdot3^4} \alpha^3 + O(\alpha^5) = \frac{1}{3}\alpha + \frac{1}{648} \alpha^3 + O(\alpha^5). \] <p> The error $ \ds e(\alpha) = \beta - \frac{\alpha}{3} $ is monotonically increasing in $\alpha$. The worst error on the interval $0 \le \alpha \le \pi/2$ is $e(\pi/2)$ = 0.0063 radians = 0.361 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.06 radians = 3.435 degrees. <p> <span class="name">Raiford</span>, whose affiliation is given as IBM, states that he has calculated the error in increments of one degree in an IBM 709. Computers were novelties when that article was published. <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on June 14, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>