<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4> Construction attributed to C. R. Lindberg, as reported in<br> Free Jamison, <i>Trisection Approximation</i>, American Mathematical Monthly, vol. 61, no. 5, May 1954, pp. 334–336. </h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="700" height="400"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <param name="e[1]" value="O;point;fixed;200,200"> <param name="e[2]" value="A;point;fixed;200,350"> <param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none"> <param name="e[4]" value="B;point;circleSlider;C1,350,0;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <param name="e[7]" value="Dtmp;point;midpoint;A,B;none;none"> <param name="e[8]" value="D;point;cutoff;O,Dtmp,O,A"> <param name="e[9]" value="OD;line;connect;O,D;none;none;lightGray"> <param name="e[10]" value="C;point;extend;B,O,B,O"> <param name="e[11]" value="OC;line;connect;O,C;none;none;lightGray"> <param name="e[12]" value="CD;line;connect;C,D;none;none;green"> <param name="e[13]" value="E;point;extend;C,D,B,C"> <param name="e[14]" value="DE;line;connect;D,E;none;none;green"> <param name="e[15]" value="OE;line;connect;O,E;none;none;red"> <param name="e[16]" value="E';point;cutoff;O,E,O,A;none;none"> <param name="e[17]" value="p1;point;fixed;200,225;none;none"> <param name="e[18]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[19]" value="l1;line;chord;OB,c1;none;none;none"> <param name="e[20]" value="q1;point;first;l1;none;none"> <param name="e[21]" value="l2;line;chord;OE,c1;none;none;none"> <param name="e[22]" value="q2;point;first;l2;none;none"> <param name="e[23]" value="s1;sector;sector;O,q2,q1;none;none;black;orange"> <param name="e[24]" value="p2;point;fixed;200,225;none;none"> <param name="e[25]" value="c2;circle;radius;O,p2;none;none;none;none"> <param name="e[26]" value="l3;line;chord;OA,c2;none;none;none"> <param name="e[27]" value="q3;point;first;l3;none;none"> <param name="e[28]" value="l4;line;chord;OE,c2;none;none;none"> <param name="e[29]" value="q4;point;first;l4;none;none"> <param name="e[30]" value="s2;sector;sector;O,q3,q4;none;none;black;yellow"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$ (but stay on the right half of the circle).<br> Press “r” to reset the diagram to its initial state.<br> The red line $OE$ is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <h2>The construction</h2> <p> According to Jamison (see the reference at the top of this page) the construction's main idea comes from an unpublished work by C. R. Lindberg. <p> Consider the circular arc $AB$ centered at $O$, shown in the diagram above. Assume the angle $AOB$ is between 0 and 180 degrees. To trisect $AOB$, do: <ol> <li> Extend $BO$ to intersect the circle at a point $C$. <li> Draw the bisector $OD$ of the angle $AOB$. <li> Draw the line $CD$ and extend it to a point $E$ such that $DE$ equals the circle's diameter. </ol> <p> The line $OE$ is an approximate trisector of the angle $AOB$. <p> Here is a heuristic explanation for why the construction works, as explained by Jamison. The key lies in the observation that (i) in the triangle $ODE$ the angles $O$ and $E$ are “small”, and (ii) the side $ED$ is twice as long as the side $OD$. Therefore from the law of sines we have $\sin(O)/\sin(E) = ED/OD = 2$, which implies that the angle $O$ is approximately twice the angle $E$ in the triangle $ODE$. <p> Let the measure of the angle $OED$ be $x$. Then the triangle's external angle at $D$, that is the angle $ODC$, is the sum of the internal angles $O$ and $E$, therefore it is approximately $3x$. Therefore the angle $OCD$ is $3x$. Therefore the angle $BOD$ is $6x$. Since the angle $E'OD$ is $2x$, we conclude that the angle $BOE'$ is $4x$. Furthermore, since the angle $BOD$ is $6x$, the angle $BOA$ is $12x$. This shows that $BOA$ is 3 times $BOE'$, as asserted. <h2>Error Analysis</h2> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $EOB$, respectively. The angle $DOB$ is half of $AOB$ by the construction, therefore it is equal to $\alpha/2$. Consequently the angle $DCB$, which is half the central angle $DOB$, equals $\alpha/4$. The triangle $DOC$ is isosceles, therefore the angle $ODC$ also equals $\alpha/4$. <p> In the triangle $OED$, let $x$ and $y$ be the sizes of the angles $OED$ and $EOD$, respectively. Since the sum $x+y$ of the triangle's internal angles equals the triangle's external angle $ODC$, we have $x+y = \alpha/4$. Let us note, however, that the angle $y$ equals $DOB$ minus $EOB$. Thus $y = \alpha/2 - \beta$, whence $x = \beta - \alpha/4$. <p> In the triangle $OED$, the side $DE$ is twice the side $OD$ by the construction, therefore the law of sines gives $\sin y = 2 \sin x$. Consequently, $\sin(\alpha/2 - \beta) = 2 \sin(\beta - \alpha/4)$. Solving this for $\beta$ we arrive at: \[ \beta = \frac{1}{4} \alpha + \arctan \frac{\sin(a/4)}{2+\cos(a/4)} = \frac{1}{3} \alpha - \frac{1}{2^6\cdot3^4} \alpha^3 + O(\alpha^5) = \frac{1}{3} \alpha - \frac{1}{5184} \alpha^3 + O(\alpha^5). \] <p> We see that the trisection error $e(\alpha) = \alpha/3 - \beta$ is given by: \[ e(\alpha) = \frac{1}{12}\alpha - \arctan \frac{\sin(a/4)}{2+\cos(a/4)}. \] (This formula is also given in Jamison's article.) The function $e(a)$ is monotonically increasing. The worst error on the interval $0 \le \alpha \le \pi/2$ is $e(\pi/2)$ = 0.000757 radians = 0.0434 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.0063 radians = 0.361 degrees. That's quite good for such a simple construction. <h2>An interesting coincidence</h2> <p> The angle $\beta$ constructed by this method coincides <em>exactly</em> with that of <a href="trisect-pllana.html">Pllana's construction</a>, where $\beta$ is given as: \[ \beta = \arctan \frac {\sin\frac{\alpha}{2} + 2\sin\frac{\alpha}{4}} {\cos\frac{\alpha}{2} + 2\cos\frac{\alpha}{4}}. \] One way to verify that the seemingly different expressions for $\beta$ are in fact identical, is to compare their derivatives. In both cases we have: \[ \frac{d\beta}{d\alpha} = \frac{3(1 + \cos\frac{\alpha}{4})}{2(5 + 4\cos\frac{\alpha}{4})}. \] <h2>An extension</h2> <p> Although this construction is quite good as is, Jamison proceeds to give <a href="trisect-jamison-ext.html">an extension of Lindberg's method</a> which requires a bit more work but is substantially more accurate. <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on July 22, 2002.<br> Cosmetic revisions on June 7, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>