<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>The incenter via algebra</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>A triangle's incenter via algebra</h1> <h2>… and extension to tetrahedra</h2> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="300"> <param name="background" value="ffffff"> <param name="title" value="The incenter via algebra"> <param name="e[1]" value="A;point;fixed;100,250"> <param name="e[2]" value="B;point;fixed;300,250"> <param name="e[3]" value="C;point;free;50,50;red;red"> <param name="e[4]" value="ABC;polygon;triangle;A,B,C"> <param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none"> <param name="e[6]" value="C';point;proportion;A,pt1,A,C,A,B,A,B;none;none"> <param name="e[7]" value="pt2;point;extend;B,A,A,C;none;none"> <param name="e[8]" value="A';point;proportion;B,pt2,B,A,B,C,B,C;none;none"> <param name="e[9]" value="pt3;point;extend;C,B,B,A;none;none"> <param name="e[10]" value="B';point;proportion;C,pt3,C,B,C,A,C,A;none;none"> <param name="e[11]" value="AA';line;connect;A,A';none;none;magenta"> <param name="e[12]" value="BB';line;connect;B,B';none;none;magenta"> <param name="e[13]" value="CC';line;connect;C,C';none;none;magenta"> <param name="e[14]" value="O;point;intersection;AA',BB'"> <param name="e[15]" value="H;point;foot;O,A,B;none;none"> <param name="e[16]" value="IC;circle;radius;O,H;none;none;black;none"> </applet> </td></tr> <tr><td> <b> Drag $C$ to change the geometry.<br> Press “r” to reset the diagram to its initial state.<br> The incenter lies at the intersection of angle bisectors. </b> </td></tr></table> <h2>Statement of the problem</h2> <p> It is a fact of elementary geometry that the center of a triangle's incircle—known as its <em>incenter</em>—lies at the point of intersection of the triangle's angle bisectors. This leads to an elegant expression for the location of the incenter as a linear combination of the triangle's vertices, as stated in: <p> <b>Proposition 1:</b> <i> Let $a$, $b$, $c$ be the lengths of the sides opposite to the vertices $A$, $B$, $C$ of the triangle $ABC$. Then the incenter, $O$, is expressed as a linear combination of the vertices as: \[ O = \frac{a}{p}A + \frac{b}{p}B + \frac{c}{p}C, \] where $p = a + b + c$ is the triangle's perimeter. </i> <p> To make sense of this statement, you need to know something about the algebra of points. The following capsule summary is all that's needed: <blockquote> <p> <b>The algebra of points:</b> Consider the points $A$ and $B$ and a variable $t$ that takes values in the range 0 to 1. If $T$ is a point on the segment $AB$ such that $AT/AB = t$, we write $T = (1-t)A + tB$. Note that when $t=0$ we get $T=A$, and when $t=1$ we get $T=B$. As the value of $t$ ranges from 0 to 1, the point $T$ slides from $A$ to $B$. </blockquote> <h2>A preliminary proposition</h2> <p> The following elementary proposition is needed for the proof of Proposition 1. This one is a standard result and is likely to be found in Euclid's <em>Elements</em> but I haven't checked. <p> <i>PS:</i> After this web page was written, I found out that Proposition 2 appears in Euclid's <em>Elements</em> as <a href="http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI3.html">Book VI, Proposition 3</a> with a simpler and more elegant proof! Nevertheless, I am retaining my original proof here as a not-so-elegant alternative. <p> <b>Proposition 2:</b> <i> Let the bisector of the angle $C$ in the triangle $ABC$ meet the side $AB$ at point $P$. We have: \[ \frac{PA}{PB} = \frac{b}{a}, \] where $a$ and $b$ are as in Proposition 1. </i> <p> <b>Proof:</b> From $P$ drop perpendicular $PM$ and $PN$ onto the sides $AC$ and $BC$; see the diagram below. The right triangles $CMP$ and $CNP$ are congruent because they share a common hypotenuse and their angles at $C$ are equal. Therefore, $PM = PN$. <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="300"> <param name="background" value="ffffff"> <param name="title" value="The incenter via algebra"> <param name="e[1]" value="A;point;fixed;50,250"> <param name="e[2]" value="B;point;fixed;350,250"> <param name="e[3]" value="C;point;free;100,50;red;red"> <param name="e[4]" value="ABC;polygon;triangle;A,B,C"> <param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none"> <param name="e[6]" value="P;point;proportion;A,pt1,A,C,A,B,A,B"> <param name="e[7]" value="CP;line;connect;C,P;none;none;magenta"> <param name="e[8]" value="M;point;foot;P,C,A"> <param name="e[9]" value="N;point;foot;P,C,B"> <param name="e[10]" value="PM;line;connect;P,M;none;none;green"> <param name="e[11]" value="PN;line;connect;P,N;none;none;green"> <param name="e[12]" value="H;point;foot;C,A,B"> <param name="e[13]" value="CH;line;connect;C,H;none;none;cyan"> <param name="e[14]" value="AH;line;connect;A,H;none;none"> <param name="e[15]" value="BN;line;connect;B,N;none;none"> <param name="e[16]" value="AM;line;connect;A,M;none;none"> </applet> </td></tr> <tr><td> <b> Drag $C$ to change the geometry.<br> Press “r” to reset the diagram to its initial state.<br> </b> </td></tr></table> <p> Let $H$ be the foot of the altitude dropped from $C$. Let us note the area of the triangle $APC$ may be expressed in two different ways in terms of the altitudes $CH$ and $PM$: \[ \frac{1}{2} AP \cdot CH = \frac{1}{2} AC \cdot PM. \] Similarly, the area of the triangle $BPC$ may be expressed in two different way in terms of the altitudes $CH$ and $PN$: \[ \frac{1}{2} BP \cdot CH = \frac{1}{2} BC \cdot PN. \] Dividing these two equalities and recalling that $PM = PN$, we arrive at the desired assertion. <b>QED</b> <h2>The proof of Proposition 1</h2> <p> The diagram below shows the bisector $CC'$ of the angle $C$. It is known from elementary geometry that the incenter $O$ lies on the bisector. From Proposition 2 we have $C'A/C'B = b/a$. It follows that $AC'/AB = b/(a+b)$. In terms of the notation of <em>the algebra of points</em> introduced earlier in this page, this is expressed as: \[ C' = \Big(1 - \frac{b}{a+b} \Big) A + \frac{b}{a+b} B = \frac{a}{a+b} A + \frac{b}{a+b} B. \] Since $O = (1-t)C + tC'$ for some $t$, we arrive at: \[ O = (1-t)C + t\Big[ \frac{a}{a+b} A + \frac{b}{a+b} B \Big]. \] This expresses the triangle's incenter $O$ in terms of its vertices, sides lengths, and a yet unknown quantity $t$ that takes values in the range 0 to 1. <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="300"> <param name="background" value="ffffff"> <param name="title" value="The incenter via algebra"> <param name="e[1]" value="A;point;fixed;100,250"> <param name="e[2]" value="B;point;fixed;300,250"> <param name="e[3]" value="C;point;free;50,50;red;red"> <param name="e[4]" value="ABC;polygon;triangle;A,B,C"> <param name="e[5]" value="pt1;point;extend;A,C,C,B;none;none"> <param name="e[6]" value="C';point;proportion;A,pt1,A,C,A,B,A,B"> <param name="e[7]" value="pt2;point;extend;B,A,A,C;none;none"> <param name="e[8]" value="A';point;proportion;B,pt2,B,A,B,C,B,C;none;none"> <param name="e[9]" value="pt3;point;extend;C,B,B,A;none;none"> <param name="e[10]" value="B';point;proportion;C,pt3,C,B,C,A,C,A;none;none"> <param name="e[11]" value="AA';line;connect;A,A';none;none;none"> <param name="e[12]" value="BB';line;connect;B,B';none;none;none"> <param name="e[13]" value="CC';line;connect;C,C';none;none;magenta"> <param name="e[14]" value="O;point;intersection;AA',BB'"> <param name="e[15]" value="H;point;foot;O,A,B;none;none"> <param name="e[16]" value="IC;circle;radius;O,H;none;none;black;none"> </applet> </td></tr> <tr><td> <b> Drag $C$ to change the geometry.<br> Press “r” to reset the diagram to its initial state.<br> </b> </td></tr></table> <p> If we repeat the same calculation by replacing the vertex $C$ by vertex $A$, we arrive at: \[ O = (1-s)A + s\Big[ \frac{b}{b+c} B + \frac{c}{b+c} C \Big], \] where $s$ is yet another unknown that takes values in the range from 0 to 1. <p> Equating the two expressions for $O$ and collecting the terms, we arrive at: \[ \Big[\frac{ta}{a+b} + s - 1\Big] A + \Big[\frac{tb}{a+b} - \frac{sb}{b+c} \Big] B + \Big[1 - t - \frac{sc}{b+c} \Big] C = 0. \] In this equations, if the coefficient of $C$ is nonzero, then we may solve for $C$, obtaining $C = \alpha A + \beta B$ for some $\alpha$ and $\beta$. But this would mean that $C$ lies along the line $AB$ which would mean the the three points $A$, $B$ and $C$ are collinear, therefore the triangle $ABC$ is degenerate. We conclude that if the triangle is non-degenerate, then the coefficient of $C$ is zero. Similar arguments show that the coefficients of $A$ and $B$ are zero. Thus, the following system of three equations hold: \[ \frac{ta}{a+b} + s - 1 = 0, \quad \frac{tb}{a+b} - \frac{sb}{b+c} = 0, \quad 1 - t - \frac{sc}{b+c} = 0. \] Solving this system for the unknowns $t$ and $s$ we obtain: \[ t = \frac{a+b}{a+b+c}, \quad s = \frac{b+c}{a+b+c}. \] Substituting these in either of the expressions for $O$ we arrive at: \[ O = \frac{a}{a+b+C}A + \frac{b}{a+b+C}B + \frac{c}{a+b+C}C, \] which is equivalent to Proposition 1's assertion. <b>QED</b> <h2>Extension to tetrahedra</h2> <p> Propositions 1 extends to tetrahedra: <p> <b>Proposition 3</b> Let $a$, $b$, $c$, $d$ be the areas of the faces opposite to the vertices $A$, $B$, $C$, $D$ of the tetrahedron $ABCD$. The the tetrahedron's incenter $O$ is given by: \[ O = \frac{a}{\mathcal{A}} A + \frac{b}{\mathcal{A}} B + \frac{c}{\mathcal{A}} C + \frac{d}{\mathcal{A}} D, \] where $\mathcal{A} = a + b + c + d$ is the tetrahedron's surface area. <p> This is proved with the aid of the following extension of Proposition 2: <p> <b>Proposition 4</b> <i> Let $a$, $b$, $c$, $d$ be the areas of the faces opposite to the vertices $A$, $B$, $C$, $D$ of the tetrahedron $ABCD$. Let the bisector plane of the (internal) dihedral angle of edge $CD$ intersect edge $AB$ at point $P$. The we have: \[ \frac{PA}{PB} = \frac{b}{a}. \] </i> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="300"> <param name="background" value="ffffff"> <param name="title" value="Triangle's incenter"> <param name="e[1]" value="A;point;fixed;100,250,300"> <param name="e[2]" value="B;point;fixed;300,250,300"> <param name="e[3]" value="C;point;fixed;350,200,-400"> <param name="e[4]" value="D;point;free;200,40;red;red"> <param name="e[5]" value="ABCD;polyhedron;tetrahedron;A,B,C,D"> <param name="e[6]" value="ABC;plane;3points;A,B,C;none;none;none;none"> <!-- construct the bisector of the dihedral angle with edge DC --> <param name="e[7]" value="pl1;plane;perpendicular;D,C;none;none;none;none"> <param name="e[8]" value="Apl1;point;foot;A,pl1;none;none"> <param name="e[9]" value="Bpl1;point;foot;B,pl1;none;none"> <param name="e[10]" value="pt1;point;angleBisector;Apl1,D,Bpl1,pl1;none;none"> <param name="e[11]" value="tmp1;plane;3points;D,C,pt1;none;none;none;none"> <param name="e[12]" value="P;point;intersection;A,B,tmp1"> <param name="e[13]" value="DP;line;connect;D,P;none;none;cyan"> <param name="e[14]" value="CP;line;connect;C,P;none;none;cyan"> </applet> </td></tr> <tr><td> <b> Drag $D$ to change the geometry.<br> Press “r” to reset the diagram to its initial state.<br> The plane $CDP$ bisects the dihedral angle of edge $CD$. </b> </td></tr></table> <p> I leave the proofs to you, the diligent reader. You will find useful information in a <a href="http://groups.google.com/group/sci.math/browse_thread/thread/56c187e018a85111/436f448dfab35a83">discussion in the sci.math newsgroup</a> from January 17, 2006. <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on June 26, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html">Geometry Problems and Puzzles</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>