<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An equilateral triangle inscribed in a rectangle</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An equilateral triangle inscribed in a rectangle</h1> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="410" height="370"> <param name="background" value="ffffff"> <param name="title" value="An equilateral triangle inscribed in a rectangle"> <!-- the moving mechanism --> <param name="e[1]" value="O;point;fixed;290,320;0;0;0;0"> <param name="e[2]" value="U1;point;fixed;510,320;0;0;0;0"> <param name="e[3]" value="V1;point;perpendicular;O,U1;0;0;0;0"> <param name="e[4]" value="U;point;angleDivider;U1,O,V1,3;0;0;0;0"> <param name="e[5]" value="V;point;angleDivider;V1,O,U1,3;0;0;0;0"> <param name="e[6]" value="circ1;circle;radius;O,U;0;0;0;0"> <param name="e[7]" value="li1;line;parallel;U,O,U1;0;0;0;0"> <param name="e[8]" value="li2;line;parallel;V,O,V1;0;0;0;0"> <param name="e[9]" value="W;point;intersection;li1,li2;0;0;0;0"> <param name="e[10]" value="VW;line;connect;V,W;0;0;lightGray"> <param name="e[11]" value="@;point;lineSegmentSlider;V,W,0,220;red;red"> <param name="e[12]" value="li3;line;parallel;@,O,U1;0;0;0;0"> <param name="e[13]" value="li4;line;chord;circ1,li3;0;0;0;0"> <param name="e[14]" value="X1;point;first;li4;0;0;0;0"> <!-- the triangle --> <param name="e[15]" value="A;point;fixed;50,320"> <param name="e[16]" value="V2;point;perpendicular;A,U1;0;0;0;0"> <param name="e[17]" value="li5;line;parallel;A,O,X1;0;0;0;0"> <param name="e[18]" value="X2;point;last;li5;0;0;0;0"> <param name="e[19]" value="X;point;extend;A,X2,A,X2;0;0;0;0"> <param name="e[20]" value="tri1;polygon;equilateralTriangle;X,A;0;0;0;0"> <param name="e[21]" value="Y;point;vertex;tri1,3;0;0;0;0"> <param name="e[22]" value="B;point;midpoint;X,Y"> <param name="e[23]" value="ABC;polygon;equilateralTriangle;A,B"> <param name="e[24]" value="C;point;vertex;ABC,3"> <!-- the rectangle --> <param name="e[25]" value="D;point;foot;B,A,U1"> <param name="e[26]" value="F;point;foot;C,A,V2"> <param name="e[27]" value="FE;line;parallel;F,A,D;0;0;0;0"> <param name="e[28]" value="E;point;last;FE"> <param name="e[29]" value="rect;polygon;quadrilateral;A,D,E,F;0;0;black;0"> <param name="e[30]" value="ADB;polygon;triangle;A,D,B;0;0;0;pink"> <param name="e[31]" value="ACF;polygon;triangle;A,C,F;0;0;0;pink"> <param name="e[32]" value="BCE;polygon;triangle;B,C,E;0;0;0;cyan"> </applet> </td></tr> <tr><td> <b> Slide the “@” up and down to change the geometry.<br> Press “r” to reset the diagram to its initial state.<br> Proposition: The blue area equals the sum of the two pink areas. </b> </td></tr></table> <h2>Problem statement</h2> <p> The diagram above shows an equilateral triangle inscribed in a rectangle in such a way that the two have a vertex in common. This subdivides the rectangle into four disjoint triangles. The original equilateral triangle is shown in white in the diagram; the other three are shown in color. <p> <b>Proposition</b> <em> The area of the blue triangle equals the sum of the areas of the two pink triangles. </em> <p> The trigonometric proof is quite straightforward. I don't know of a classical proof <i>a la</i> <span class="name">Euclid</span>. (Well, actually I haven't tried much.) If you can think of a neat non-trigonometric proof, let me know. I will put it here with due credit. <p> This problem appeared as a conjecture <a href="http://mathforum.org/kb/thread.jspa?forumID=129&messageID=1083967">in an article</a> in the <code>geometry.puzzles</code> newsgroup on March 15, 1997. <p> <b>Note added January 8, 2017:</b> Here is a <a href="inscribed-equilateral-solution.html">clever solution</a> that <b>Peter Renz</b> sent me a in December 2016. Thanks, Peter! <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on July 2, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html">Geometry Problems and Puzzles</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>