<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>A geometric inequality</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>A geometric inequality</h1> <h4>…and its solution by <a href="mailto:haoyuep@aol.com">Dan Hoey</a></h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="400"> <param name="background" value="ffffff"> <param name="title" value="A geometric inequality"> <param name="e[1]" value="A;point;fixed;100,300"> <param name="e[2]" value="B;point;fixed;300,300"> <param name="e[3]" value="ABC;polygon;equilateralTriangle;A,B"> <param name="e[4]" value="C;point;vertex;ABC,3"> <param name="e[5]" value="P;point;free;180,320;red;red"> <param name="e[6]" value="PA;line;connect;P,A;none;none;green"> <param name="e[7]" value="PB;line;connect;P,B;none;none;green"> <param name="e[8]" value="PC;line;connect;P,C;none;none;magenta"> </applet> </td></tr> <tr><td> <b> Drag the point $P$.<br> Press “r” to reset the diagram to its initial state.<br> Proposition: $PC \le PA + PB$. </b> </td></tr></table> <h2>The problem</h2> <p> <b>Proposition:</b> <i>Let $ABC$ be an equilateral triangle and $P$ be an arbitrary point in its plane. Then $PC \le PA + PB$.</i> <p> This was brought up in <a href="http://mathforum.org/kb/message.jspa?messageID=1086018">a message </a> on the <code>geometry.puzzles</code> newsgroup on November 11, 2001. Go to that message and scroll to the bottom of the page to see the discussion thread. <p> On November 22, 2001 <a href="mailto:haoyuep@aol.com">Dan Hoey</a> offered a particularly nice solution. He also commented that he had learned that problem may be related to the <em>Van Schooten Theorem</em>, which indeed it is. See <a href="http://www.cut-the-knot.org/Curriculum/Geometry/Pompeiu.shtml">Van Schooten's and Pompeiu's Theorems: What are these?</a> for much detail and historical background. <h2>The proof</h2> <p> Here is Dan Hoey's proof of the proposition as stated above. <p> On the line segment $AP$ construct the equilateral triangle $APD$, as shown in the diagram below, then add the line segment $DC$. <p> Let us show that the triangles $APB$ and $ADC$ are congruent. For this, Let us observe that the sides $AP$ and $AB$ in the triangle $APB$ equal the sides $AD$ and $AC$ in the triangle $ADC$, by the construction. Moreover, the angles $BAP$ and $CAD$ are equal because each equals the difference of a 60 degree angle and the angle $DAB$. Therefore, the triangles $APB$ and $ADC$ are congruent by the side-angle-side equality. We conclude, in particular, that $PB = DC$. <p> In the triangle $PDC$ we have $PC \le PD + DC$. In this inequality replace $PD$ and $DC$ by their equivalents $PA$ and $PB$ to arrive at $PC \le PA + PB$. <b>QED</b> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="400" height="400"> <param name="background" value="ffffff"> <param name="title" value="A geometric inequality"> <param name="e[1]" value="A;point;fixed;100,300"> <param name="e[2]" value="B;point;fixed;300,300"> <param name="e[3]" value="ABC;polygon;equilateralTriangle;A,B"> <param name="e[4]" value="C;point;vertex;ABC,3"> <param name="e[5]" value="P;point;free;180,320;red;red"> <param name="e[6]" value="PA;line;connect;P,A;none;none;green"> <param name="e[7]" value="PB;line;connect;P,B;none;none;green"> <param name="e[8]" value="PC;line;connect;P,C;none;none;magenta"> <param name="e[9]" value="APD;polygon;equilateralTriangle;A,P;none;none;none"> <param name="e[10]" value="D;point;vertex;APD,3;"> <param name="e[11]" value="AD;line;connect;A,D;none;none;lightGray"> <param name="e[12]" value="PD;line;connect;P,D;none;none;lightGray"> <param name="e[13]" value="CD;line;connect;C,D;none;none;lightGray"> </applet> </td></tr> <tr><td> <b> Drag the point $P$.<br> Press “r” to reset the diagram to its initial state.<br> Observation: The triangles $APB$ and $ADC$ are congruent. </b> </td></tr></table> <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on November 23, 2001.<br> Cosmetic revisions on June 23, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html">Geometry Problems and Puzzles</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>