<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4>Construction due to <a href="mailto:avniu66@hotmail.com">Avni Pllana</a></h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="450" height="260"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <param name="e[1]" value="O;point;fixed;210,225"> <param name="e[2]" value="A;point;fixed;410,225"> <param name="e[3]" value="cir1;circle;radius;O,A;none;none;none;none"> <param name="e[4]" value="B;point;circleSlider;cir1,0,0;red;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <param name="e[7]" value="arcAB;sector;sector;O,A,B;none;none;blue;none"> <param name="e[8]" value="pt1;point;angleBisector;A,O,B;none;none"> <param name="e[9]" value="C;point;cutoff;O,pt1,O,A"> <param name="e[10]" value="li1;line;connect;O,C;none;none;lightGray"> <param name="e[11]" value="M;point;midpoint;O,C"> <param name="e[12]" value="pt3;point;angleBisector;A,O,C;none;none"> <param name="e[13]" value="D;point;cutoff;O,pt3,O,A"> <param name="e[14]" value="li2;line;connect;O,D;none;none;lightGray"> <param name="e[15]" value="N;point;midpoint;M,D"> <param name="e[16]" value="MD;line;connect;M,D;none;none;cyan"> <param name="e[17]" value="li3;line;cutoff;O,N,O,A;none;none;red"> <!-- angle marker --> <param name="e[18]" value="p1;point;fixed;240,225;none;none"> <param name="e[19]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[20]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[21]" value="q1;point;first;l1;none;none"> <param name="e[22]" value="l2;line;chord;O,N,c1;none;none;none"> <param name="e[23]" value="q2;point;first;l2;none;none"> <param name="e[24]" value="l3;line;chord;OB,c1;none;none;none"> <param name="e[25]" value="q3;point;first;l3;none;none"> <param name="e[26]" value="s1;sector;sector;O,q1,q2;none;none;black;orange"> <param name="e[27]" value="s2;sector;sector;O,q2,q3;none;none;black;yellow"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$.<br> Press “r” to reset the diagram to its initial state.<br> The red line is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <h2>Construction</h2> <p> This approximate trisection, due to Avni Pllana, was announced <a href="http://mathforum.org/kb/message.jspa?messageID=1084688">in a message</a> in the <code>geometry.puzzles</code> newsgroup on July 23, 2003. Scroll to the bottom of that page to view the related discussion thread. <p> Consider the angle $AOB$ given by the circular arc $AB$ centered at $O$, as shown in the diagram above. <ol> <li> Pick points $C$ and $D$ on the arc $AB$ so that $OC$ bisects the angle $AOB$ and $OD$ bisects the angle $AOC$. <li> Let $M$ be the midpoint of the line segment $OC$. <li> Let $N$ be the midpoint of the line segment $MD$. </ol> The line $ON$ is an approximate trisector of the angle $AOB$. <h2>Error Analysis</h2> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $AON$, respectively. One may verify that: \[ \beta = \arctan \frac {\sin\frac{\alpha}{2} + 2\sin\frac{\alpha}{4}} {\cos\frac{\alpha}{2} + 2\cos\frac{\alpha}{4}} = \frac{1}{3}\alpha - \frac{1}{2^6\cdot3^4} \alpha^3 + O(\alpha^5) = \frac{1}{3}\alpha - \frac{1}{5184} \alpha^3 + O(\alpha^5). \] <em>Hint:</em> Represent the points as complex numbers in the polar form $re^{i\theta}$. <p> The error $ \ds e(\alpha) = \frac{\alpha}{3} - \beta $ increases monotonically with $\alpha$. The worst error on the interval $0 \le \alpha \le \pi/2$ is $e(\pi/2)$ = 0.000757 radians = 0.0434 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.00630 radians = 0.361 degrees. That's quite good for such a simple construction. <h2>An interesting coincidence</h2> <p> The angle $\beta$ constructed by this method coincides <em>exactly</em> with that of <a href="trisect-jamison.html">Lindberg's construction</a>, where $\beta$ is given as: \[ \beta = \frac{1}{4} \alpha + \arctan \frac{\sin\frac{\alpha}{4}}{2+\cos\frac{\alpha}{4}}. \] One way to verify that the seemingly different expressions for $\beta$ are in fact identical, is to compare their derivatives. In both cases we have: \[ \frac{d\beta}{d\alpha} = \frac{3(1 + \cos\frac{\alpha}{4})}{2(5 + 4\cos\frac{\alpha}{4})}. \] <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on June 10, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>